• Abramopoulos, F., C. Rosenzweig, and B. Choudhury, 1988: Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. J. Climate,1, 921–941.

    • Crossref
    • Export Citation
  • Aguado, E., 1985: Radiation balances of melting snow covers at an open site in the central Sierra Nevada, California. Water Resour. Res.,21, 1649–1654.

    • Crossref
    • Export Citation
  • Anderson, E. A., 1976: A point energy balance model of a snow cover. NOAA Tech. Rep. NWS 19, Office of Hydrology, National Weather Service, 150 pp.

  • Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci.,46, 661–685.

    • Crossref
    • Export Citation
  • Bartlett, P., J. H. Mccaughey, P. Lafleur, and D. L. Verseghy, 2000: Performance of the Canadian Land Surface Scheme at temperate aspen-birch and mixed forests, and a boreal young jack pine forest: Tests involving canopy conductance parametrizations. Atmos.–Ocean,38, 113–140.

    • Crossref
    • Export Citation
  • Beven, K. J., and M. J. Kirkby, 1979: A physically-based variable contributing area model of basin hydrology. Hydrol. Sci. J.,24, 43–69.

    • Crossref
    • Export Citation
  • Billings, W. D., J. O. Luken, D. A. Mortensen, and K. M. Peterson, 1982: Arctic tundra: A sink or source for atmospheric carbon dioxide in a changing environment. Oecologia,53, 7–11.

    • Crossref
    • Export Citation
  • Bonan, G. B., 1995: Land atmosphere CO2 exchange simulated by a land-surface process model coupled to an atmospheric general-circulation model. J. Geophys. Res.,100, 2817–2831.

    • Crossref
    • Export Citation
  • ——, 1996: A land surface model (LSM Version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. Tech. Note NCAR/TN-417+STR, National Center for Atmospheric Research, Boulder, CO, 150 pp.

  • Bowling, L. C., and D. P. Lettenmaier, 1998: A macroscale hydrological model for the Arctic basin. Eos, Trans. Amer. Geophys. Union (Fall Meeting Suppl.), H72D-18.

  • Brun, E., E. Martin, V. Simon, C. Gendre, and C. Coleou, 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol.,35, 333–342.

    • Crossref
    • Export Citation
  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and northern hemisphere climate predictability. Geophys. Res. Lett.,26, 345–348.

    • Crossref
    • Export Citation
  • Dey, B., and O. S. R. U. Bhanukumar, 1983: Himalyan winter snow cover area and summer monsoon rainfall over India. J. Geophys. Res.,88, 5471–5474.

    • Crossref
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. Tech. Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, CO, 72 pp.

  • Ducharne, A., R. D. Koster, M. J. Suarez, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes, 2. Parameter estimation and model demonstration. J. Geophys. Res.,105, 24 823–24 838.

    • Crossref
    • Export Citation
  • Famiglietti, J. S., and E. F. Wood, 1991: Evapotranspiration and runoff from large land areas—land surface hydrology for atmospheric general-circulation models. Surv. Geophys.,12, 179–204.

    • Crossref
    • Export Citation
  • Foster, D. J., Jr., and R. D. Davy, 1988: Global snow depth climatology. USAF Environmental Technical Applications Center, Scott Air Force Base, IL, 43 pp.

  • Foster, J., and Coauthors, 1996: Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets. J. Climate,9, 409–426.

    • Crossref
    • Export Citation
  • Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy, 1996: Exchange of carbon dioxide by a deciduous forest:Response to interannual climate variability. Science,271, 1576–1578.

    • Crossref
    • Export Citation
  • ——, and Coauthors, 1998: Sensitivity of boreal forest carbon balance to soil thaw. Science,279, 214–217.

    • Crossref
    • Export Citation
  • Hahn, D. G., and J. Shukla, 1976: An apparent relationship between the Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci.,33, 2461–2462.

    • Crossref
    • Export Citation
  • Hall, D. K., 1988: Assessment of polar climate change using satellite technology. Rev. Geophys.,26, 26–39.

    • Crossref
    • Export Citation
  • Hansen, J. E., G. Russel, D. Rind, P. H. Stone, A. A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev.,111, 609–662.

    • Crossref
    • Export Citation
  • Hardy, J. P., R. E. Davis, R. Jordan, W. Ni, and C. E. Woodcock, 1998: Snow ablation modelling in a mature aspen stand of the boreal forest. Hydrol. Processes,12, 1763–1778.

    • Crossref
    • Export Citation
  • Hartman, M. D., J. S. Baron, R. B. Lammers, D. W. Cline, L. E. Band, G. E. Liston, and C. Tague, 1999: Simulations of snow distribution and hydrology in a mountain basin. Water Resour. Res.,35, 1587–1603.

    • Crossref
    • Export Citation
  • Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Eds., 1996: Climate Change 1995:The Science of Climate Change. Cambridge University Press, 572 pp.

  • Johnson, R. H., G. S. Young, and J. J. Toth, 1984: Mesoscale weather effects of variable snow cover over northeast Colorado. Mon. Wea. Rev.,112, 1141–1152.

    • Crossref
    • Export Citation
  • Jordan, R. E., E. L Andreas, and A. P. Makshtas, 1999: Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res.,104, 7785–7806.

    • Crossref
    • Export Citation
  • Kojima, K., 1967: Densification of seasonal snow cover. Physics of Ice and Snow: Proc. Int. Conf. on Low Temperature Science, Sapporo, Japan, Institute of Low Temperature Science, Hokkaido University, 929–952.

  • Koster, R. D., and M. J. Suarez, 1992a: A comparative analysis of two land surface heterogeneity representations. J. Climate,5, 1379–1390.

    • Crossref
    • Export Citation
  • ——, and ——, 1992b: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res.,97, 2697–2715.

    • Crossref
    • Export Citation
  • ——, and ——, 1995: The relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res.,100, 13 775–13 790.

  • ——, and ——, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 59 pp.

  • ——, ——, A. Ducharne, M. Stieglitz, and P. Kumar, 2000a: A catchment-based approach to modeling land surface processes in a GCM. Part I: Model structure. J. Geophys. Res.,105, 24 809–24 822.

  • ——, ——, and M. Heiser, 2000b: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor.,1, 26–46.

    • Crossref
    • Export Citation
  • Kripalani, R. H., S. V. Singh, A. D. Vernekar, and V. Thapliyal, 1996:Empirical study on Nimbus-7 snow mass and Indian summer monsoon rainfall. Int. J. Climatol.,16, 23–34.

    • Crossref
    • Export Citation
  • Kucharik, C. J., and Coauthors, 2000: Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles,14, 795–825.

    • Crossref
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science,284, 2156–2159.

    • Crossref
    • Export Citation
  • LDEO, cited 2000: Climate data library. [Available online at http//ingrid.ldeo.columbia.edu.].

  • Levine, E. R., and R. G. Knox, 1997: Modeling soil temperature and snow dynamics in northern forests. J. Geophys. Res.,102, 29 407–29 416.

    • Crossref
    • Export Citation
  • Liston, G. E., and M. Sturm, 1998: A snow-transport model for complex terrain. J. Glaciol.,44, 498–516.

    • Crossref
    • Export Citation
  • ——, R. A. Pielke, and E. M. Greene, 1999: Improving first-order snow-related deficiencies in a regional climate model. J. Geophys. Res.,104, 19 559–19 567.

  • Loth, B., and H. F. Graf, 1998a: Modeling the snow cover in climate studies—1. Long-term integrations under different climatic conditions using a multilayered snow-cover model. J. Geophys. Res.,103, 11 313–11 327.

    • Crossref
    • Export Citation
  • ——, and ——, 1998b: Modeling the snow cover in climate studies—2. The sensitivity to internal snow parameters and interface processes. J. Geophys. Res.,103, 11 329–11 340.

  • ——, ——, and J. M. Oberhuber, 1993: Snow cover model for global climate simulations. J. Geophys. Res.,98, 10 451–10 464.

  • Lynch-Stieglitz, M., 1994: The development and validation of a simple snow model for the GISS GCM. J. Climate,7, 1842–1855.

    • Crossref
    • Export Citation
  • McFadden, J. P., F. S. Chapin, and D. Y. Hollinger, 1998: Subgrid-scale variability in the surface energy balance of arctic tundra. J. Geophys. Res.,103, 28 947–28 961.

    • Crossref
    • Export Citation
  • Mysak, L. A., and S. A. Venegas, 1998: Decadal climate oscillations in the Arctic: A new feedback loop for atmosphere–ice–ocean interactions. Geophys. Res. Lett.,25, 3607–3610.

    • Crossref
    • Export Citation
  • Namias, J., 1985: Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon. Wea. Rev.,113, 1542–1553.

    • Crossref
    • Export Citation
  • NSIDC, 1996: Northern Hemisphere EASE-Grid weekly snow cover and sea ice extent. Volumes 1.0–2.0, National Snow and Ice Data Center, CD-ROM.

  • Oechel, W. C., G. Vourlitis, and S. J. Hastings, 1997: Cold season CO2 emission from arctic soils. Global Biogeochem. Cycles,11, 163–172.

    • Crossref
    • Export Citation
  • Pauwels, V. R. N., and E. F. Wood, 1999: A soil–vegetation–atmosphere transfer scheme for the modeling of water and energy balance processes in high latitudes. 2. Application and validation. J. Geophys. Res.,104, 27 823–27 839.

    • Crossref
    • Export Citation
  • Pitman, A. J., Z.-L. Yang, J. G. Cogley, and A. Henderson-Sellers, 1991: Description of bare essentials of surface transfer for the Bureau of Meteorological Research Centre AGCM. BMRC Research Rep. 32, 132 pp.

  • Ropelewski, C. F., A. Robock, and M. Matson, 1984: Comments on“An apparent relationship between the Eurasian snow cover and Indian monsoon rainfall.” J. Climate Appl. Meteor.,23, 341–342.

    • Crossref
    • Export Citation
  • Segal, M., J. H. Cramer, R. A. Pielke, J. R. Garratt, and P. Hildebrand, 1991: Observational evaluation of the snow breeze. Mon. Wea. Rev.,119, 412–424.

    • Crossref
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere Model (Sib) for use within general circulation models. J. Atmos. Sci.,43, 505–531.

    • Crossref
    • Export Citation
  • ——, and Coauthors, 1996: The ISLSCP Initiative I global datasets:Surface boundary conditions and atmospheric forcings for land–atmosphere studies. Bull. Amer. Meteor. Soc.,77, 1987–2005.

    • Crossref
    • Export Citation
  • Sivapalan, M., K. Beven, and E. F. Wood, 1987: On hydrologic similarity. 2. A scaled model of storm runoff production. Water Resour. Res.,23, 2266–2278.

    • Crossref
    • Export Citation
  • Slater, A. G., A. J. Pitman, and C. E. Desborough, 1998: The validation of a snow parameterization designed for use in general circulation models. Int. J. Climatol.,18, 595–617.

    • Crossref
    • Export Citation
  • Stieglitz, M., D. Rind, J. Famiglietti, and C. Rosenzweig, 1997: An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J. Climate,10, 118–137.

  • ——, J. Hobbie, A. Giblin, and G. Kling, 1999: Hydrologic modeling of an arctic tundra watershed: Toward pan-Arctic predictions. J. Geophys. Res.,104, 27 507–27 518.

    • Crossref
    • Export Citation
  • ——, A. Giblin, J. Hobbie, G. Kling, and M. Williams, 2000: Simulating the effects of climate change and climate variability on carbon dynamics in Arctic tundra. Global Biogeochem. Cycles,14, 1123–1136.

    • Crossref
    • Export Citation
  • Verdin, K. L., and J. P. Verdin, 1999: A topological system for delineation and codification of the earth’s river basins. J. Hydrol.,218, 1–12.

    • Crossref
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—a Canadian Land Surface Scheme for GCMS. 1. Soil model. Int. J. Climatol.,11, 111–133.

    • Crossref
    • Export Citation
  • ——, I. R. Saunders, J. D. Bowers, Z. Huo, and W. G. Bailey, 2000:Application of the Canadian Land Surface Scheme to the simulation of energy and water fluxes over Alpine tundra. Atmos.–Ocean,38, 37–55.

    • Crossref
    • Export Citation
  • Walter, B. P., M. Heimann, R. D. Shannon, and J. R. White, 1996: A process-based model to derive methane emissions from natural wetlands. Geophys. Res. Lett.,23, 3731–3734.

    • Crossref
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River Basin experiment: 1. Experiment description and summary intercomparisons. Global Planet. Change,19, 115–135.

    • Crossref
    • Export Citation
  • Yang, Z. L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997:Validation of the snow submodel of the Biosphere–Atmosphere Transfer Scheme with Russian snow cover and meteorological observational data. J. Climate,10, 353–373.

  • Zhang, T., R. G. Barry, and K. Knowles, 1999: Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere. Polar Geogr.,22, 147–169.

  • Zimov, S. A., I. P. Semiletov, S. P. Daviodov, Y. V. Voropaev, S. F. Prosyannikov, C. S. Wong, and Y. H. Chan, 1993: Wintertime CO2 emission from soils of northeastern Siberia. Arctic,46, 197–204.

    • Crossref
    • Export Citation
  • ——, S. P. Davidov, Y. V. Voropaev, S. F. Prosiannikov, I. P. Semiletov, M. C. Chapin, and F. S. Chapin, 1996: Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric C02. Climatic Change,33, 111–120.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 219 26
PDF Downloads 65 65 16

The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales

View More View Less
  • 1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 2 UMR Sisyphe, Université Pierre et Marie Curie, Paris, France
  • | 3 Hydrologic Sciences Branch, Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

The three-layer snow model of Lynch-Stieglitz is coupled to the global catchment-based land surface model of the National Aeronautics and Space Administration’s Seasonal to Interannual Prediction Project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period of 1987–88. The various snow processes included in the three-layer model, such as snow melting and refreezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale. This comparison indicates that the three-layer model, originally developed and validated at small experimental catchments, does indeed capture the important snow processes that control the growth and the ablation of continental-scale snowpack and its snow insulation capabilities.

Corresponding author address: Marc Stieglitz, Lamont-Doherty Earth Observatory, Route 9W, Palisades, NY 10964.

Email: marc@ldeo.columbia.edu

Abstract

The three-layer snow model of Lynch-Stieglitz is coupled to the global catchment-based land surface model of the National Aeronautics and Space Administration’s Seasonal to Interannual Prediction Project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period of 1987–88. The various snow processes included in the three-layer model, such as snow melting and refreezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale. This comparison indicates that the three-layer model, originally developed and validated at small experimental catchments, does indeed capture the important snow processes that control the growth and the ablation of continental-scale snowpack and its snow insulation capabilities.

Corresponding author address: Marc Stieglitz, Lamont-Doherty Earth Observatory, Route 9W, Palisades, NY 10964.

Email: marc@ldeo.columbia.edu

Save