• Belward, A. S., 1996: The IGBP-DIS global 1 km land cover data set (DISCover): Proposal and implementation plans. IGBP-DIS Working Paper 13, Toulouse, France, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Canadell, J., Jackson R. B. , Ehleringer J. R. , Mooney H. A. , Sala D. E. , and Schulze E. D. , 1996: Maximum rooting depth of vegetation type of at the global scale. Oecologia, 108 , 583595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desborough, C. E., 1997: The impact of root-weighting on the response of transpiration to moisture stress in land surface schemes. Mon. Wea. Rev, 125 , 19201930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , and Kennedy P. J. , 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version le as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Shaikh M. , Bryant R. , and Graumlich L. , 1998: Interactive canopies in a climate model. J. Climate, 11 , 28232836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddes, R. A., and Coauthors,. . 2001: Modeling root water uptake in hydrological and climate models. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Horton, J. L., and Hart S. C. , 1998: Hydraulic lift: A potentially important ecosystem process. Trends Ecol. Evol, 13 , 232235.

  • Jackson, R. B., Canadell J. , Ehleringer J. R. , Mooney H. A. , Sala O. E. , and Schulze E. D. , 1996: A global analysis of root distributions for terrestrial biomes. Oecologia, 108 , 389411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. B., Mooney H. A. , and Schulze E. D. , 1997: A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. USA, 94 , 73627366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. B., and Coauthors,. . 2000: Belowground consequences of vegetation change and their treatment in models. Ecol. Appl, 10 , 470483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., Miller N. L. , Kim T. , and Zeng X. , 2000: Sensitivity of the simulated summer hydrologic cycle of the western U.S. to land-surface characterizations and its implications for warm-season prediction. Preprints, 25th NOAA Climate Diagnostics and Prediction Workshop, Palisades, NY, NOAA.

    • Search Google Scholar
    • Export Citation
  • Kleidon, A., and Heimann M. , 1998: Optimized rooting depth and its impacts on the simulated climate of an atmospheric general circulation model. Geophys. Res. Lett, 25 , 345348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, C-T., and Katul G. , 2000: The dynamic role of root-water uptake in coupling potential to actual transpiration. Adv. Water Res, 23 , 427439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., and Belward A. S. , 1977: The IGBP-DIS global 1-km land cover data set, DISCover: First results. Int. J. Remote. Sens, 18 , 32893295.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., and Coauthors,. . 1996: Analysis of transpiration results from the RICE and PILPS workshop. Global Planet. Change, 13 , 7388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., 1997: Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics. Geophys. Res. Lett, 24 , 269271.

  • Nepstad, D. C., and Coauthors,. . 1994: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372 , 666669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Los S. O. , Tucker C. J. , Justice C. O. , Dazlich D. A. , Collatz G. J. , and Randall D. A. , 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9 , 706737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, E. L., and Kalisz P. J. , 1991: On the maximum extent of tree roots. For. Ecol. Manage, 46 , 59102.

  • Yang, Z-L., Dickinson R. E. , Henderson-Sellers A. , and Pitman A. J. , 1995: Preliminary study of spin-up processes in landsurface models with the PILPS Phase 1(a) data. J. Geophys. Res, 100 , 1655316578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., Dai Y-J. , Dickinson R. E. , and Shaikh M. , 1998: The role of root distribution for land climate simulation. Geophys. Res. Lett, 25 , 45334536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., Dickinson R. E. , Walker A. , Shaikh M. , DeFries R. S. , and Qi J. , 2000: Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteor, 39 , 826839.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 824 399 7
PDF Downloads 652 355 10

Global Vegetation Root Distribution for Land Modeling

View More View Less
  • 1 Institute of Atmospheric Physics, The University of Arizona, Tucson, Arizona
Restricted access

Abstract

Vegetation root distribution is one of the factors that determine the overall water holding capacity of the land surface and the relative rates of water extraction from different soil layers for vegetation transpiration. Despite its importance, significantly different root distributions are used by different land surface models. Using a comprehensive global field survey dataset, vegetation root distribution (including rooting depth) has been developed here for three of the most widely used land cover classifications [i.e., the Biosphere–Atmosphere Transfer Scheme (BATS), International Geosphere–Biosphere Program (IGBP), and version 2 of the Simple Biosphere Model (SiB2)] for direct use by any land model with any number of soil layers.

Corresponding author address: Xubin Zeng, Institute of Atmospheric Physics, The University of Arizona, P.O. Box 210081, Tucson, AZ 85721. Email: xubin@atmo.arizona.edu

Abstract

Vegetation root distribution is one of the factors that determine the overall water holding capacity of the land surface and the relative rates of water extraction from different soil layers for vegetation transpiration. Despite its importance, significantly different root distributions are used by different land surface models. Using a comprehensive global field survey dataset, vegetation root distribution (including rooting depth) has been developed here for three of the most widely used land cover classifications [i.e., the Biosphere–Atmosphere Transfer Scheme (BATS), International Geosphere–Biosphere Program (IGBP), and version 2 of the Simple Biosphere Model (SiB2)] for direct use by any land model with any number of soil layers.

Corresponding author address: Xubin Zeng, Institute of Atmospheric Physics, The University of Arizona, P.O. Box 210081, Tucson, AZ 85721. Email: xubin@atmo.arizona.edu

Save