Uncertainty Assessment of the ERA-20C Reanalysis Based on the Monthly In Situ Precipitation Analysis of the Global Precipitation Climatology Centre

Elke Rustemeier Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Elke Rustemeier in
Current site
Google Scholar
PubMed
Close
,
Markus Ziese Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Markus Ziese in
Current site
Google Scholar
PubMed
Close
,
Anja Meyer-Christoffer Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Anja Meyer-Christoffer in
Current site
Google Scholar
PubMed
Close
,
Udo Schneider Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Udo Schneider in
Current site
Google Scholar
PubMed
Close
,
Peter Finger Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Peter Finger in
Current site
Google Scholar
PubMed
Close
, and
Andreas Becker Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Andreas Becker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The uncertainty of the precipitation parameter in the ECMWF twentieth-century (ERA-20C) centennial reanalysis is assessed by means of a comparison with the GPCC in situ product Full Data Monthly Version 7 (FDM-V7). For the spatial and temporal validation of ERA-20C, global temporal scores were calculated on monthly, seasonal, and annual time scales. These include contingency table scores, correlations, and differences in the trend, along with time series analyses. Not surprisingly, the regions with the strongest deviations correspond to regions with data scarcity, such as mountainous regions with their upwind and downwind effects, and monsoon regions. They all show a strong systematic bias (ERA-20C minus FDM-V7) and significant breaks in the time series. The mean annual global bias is about 37 mm, and the median is about 8 mm yr−1. Among the largest mean annual biases are, for example, 3361 mm in the southern Andes, 2603 mm in the Western Ghats, and 2682 mm in Papua New Guinea. However, if there is high station density, the precipitation distribution is correctly reproduced, even in orographically demanding regions such as the Alps.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elke Rustemeier, gpcc@dwd.de

Abstract

The uncertainty of the precipitation parameter in the ECMWF twentieth-century (ERA-20C) centennial reanalysis is assessed by means of a comparison with the GPCC in situ product Full Data Monthly Version 7 (FDM-V7). For the spatial and temporal validation of ERA-20C, global temporal scores were calculated on monthly, seasonal, and annual time scales. These include contingency table scores, correlations, and differences in the trend, along with time series analyses. Not surprisingly, the regions with the strongest deviations correspond to regions with data scarcity, such as mountainous regions with their upwind and downwind effects, and monsoon regions. They all show a strong systematic bias (ERA-20C minus FDM-V7) and significant breaks in the time series. The mean annual global bias is about 37 mm, and the median is about 8 mm yr−1. Among the largest mean annual biases are, for example, 3361 mm in the southern Andes, 2603 mm in the Western Ghats, and 2682 mm in Papua New Guinea. However, if there is high station density, the precipitation distribution is correctly reproduced, even in orographically demanding regions such as the Alps.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elke Rustemeier, gpcc@dwd.de
Save
  • Auer, I., 1992: Experiences with the completion and homogenization of long-term precipitation series in Austria. Central European Research Initiative, Project Group Meteorology Working Paper 1, 7 pp.

  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Coauthors, 2016: Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos., 121, 44684486, https://doi.org/10.1002/2015JD024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, R., 1992: Description of the procedure of homogenizing temperature time series in Austria. Central European Research Initiative, Project Group Meteorology Working Paper 2, 14 pp.

  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, https://doi.org/10.1175/2008JAMC1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and Coauthors, 2018: The EU-FP7 ERA-CLIM2 project contribution to advancing science and production of Earth system climate reanalyses. Bull. Amer. Meteor. Soc., 99, 10031014, https://doi.org/10.1175/BAMS-D-17-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Compo, G. P., and Coauthors, 2015: The International Surface Pressure Databank, version 3. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 20 August 2017, https://doi.org/10.5065/D6D50K29.

    • Crossref
    • Export Citation
  • Craddock, J. M., 1979: Methods of comparing annual rainfall records for climatic purposes. Weather, 34, 332346, https://doi.org/10.1002/j.1477-8696.1979.tb03465.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., M. Balmaseda, G. Balsamo, R. Engelen, A. Simmons, and J.-N. Thépaut, 2014: Toward a consistent reanalysis of the climate system. Bull. Amer. Meteor. Soc., 95, 12351248, https://doi.org/10.1175/BAMS-D-13-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2018a: Browse reanalysis datasets. ECMWF, accessed 8 June 2018, https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/browse-reanalysis-datasets.

  • ECMWF, 2018b: Grid point to grid point interpolation. ECMWF, accessed 20 August 2018, https://confluence.ecmwf.int/display/EMOS/Grid+point+to+Grid+point+Interpolation.

  • Gibson, J., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1999: ERA-15 description, version 2. ECMWF ERA Rep. 1, 72 pp.

  • Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric model ensemble. Quart. J. Roy. Meteor. Soc., 141, 23502375, https://doi.org/10.1002/qj.2528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, https://doi.org/10.1002/joc.3370100202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maass, C., 2018: MARS user documentation. ECMWF, accessed 30 January 2019, https://confluence.ecmwf.int/display/UDOC/MARS+user+documentation.

  • Marchetto, A., 2014: rkt: Mann-Kendall test, seasonal and regional Kendall tests, version 1.3. R package, http://CRAN.R-project.org/package=rkt.

  • Meyer-Christoffer, A., A. Becker, P. Finger, B. Rudolf, U. Schneider, and M. Ziese, 2015: GPCC climatology version 2015 (at 0.25°, 0.5°, 1.0°, 2.5°): Monthly land-surface precipitation climatology for every month and the total year from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre hosted at Deutscher Wetterdienst (DWD), accessed 15 June 2017, https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2015_100.

    • Crossref
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517, https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot re-analysis of the 20th-century assimilating surface observations only (ERA-20C). ECMWF ERA Rep. 14, 62 pp.

  • Poli, P., H. Hersbach, P. Berrisford, D. Dee, A. Simmons, and P. Laloyaux, 2015: ERA-20C deterministic. ECMWF ERA Rep. 20, 53 pp.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubel, F., and M. Hantel, 1999: Correction of daily rain gauge measurements in the Baltic Sea drainage basin. Nord. Hydrol., 30, 191208, https://doi.org/10.2166/nh.1999.0011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre hosted at Deutscher Wetterdienst (DWD), accessed 15 June 2017, https://doi.org/10.5676/DWD_GPCC/FD_M_V6_100.

    • Crossref
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2015: GPCC full data reanalysis version 7.0 (at 0.5°, 1.0°, 2.5°): Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre hosted at Deutscher Wetterdienst (DWD), accessed 15 June 2017, https://doi.org/10.5676/DWD_GPCC/FD_M_V7_100.

    • Crossref
    • Export Citation
  • Schneider, U., P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, 2017: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8, 52, https://doi.org/10.3390/atmos8030052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1996: Adjustment of tipping-bucket precipitation gauge measurements. Atmos. Res., 42, 237246, https://doi.org/10.1016/0169-8095(95)00066-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ungersböck, M., F. Rubel, T. Fuchs, and B. Rudolf, 2001: Bias correction of global daily rain gauge measurements. Phys. Chem. Earth Part B, 26, 411414, https://doi.org/10.1016/S1464-1909(01)00027-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Wilks, D. S., 2006a: Spearman rank correlation and Kendall’s τ. Statistical Methods in the Atmospheric Sciences, 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 55–57.

  • Wilks, D. S., 2006b: Scalar attributes characterizing 2 × 2 contingency tables. Statistical Methods in the Atmospheric Sciences, 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 262–265.

  • Willmott, C. J., and S. M. Robeson, 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221229, https://doi.org/10.1002/joc.3370150207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., C. M. Rowe, and W. D. Philpot, 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Amer. Cart., 12, 516, https://doi.org/10.1559/152304085783914686.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, https://doi.org/10.1002/joc.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 508 129 20
PDF Downloads 369 103 23