A Prognostic Nested k-Nearest Approach for Microwave Precipitation Phase Detection over Snow Cover

Zeinab Takbiri Department of Civil, Environmental and Geo-Engineering, and St. Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, Minnesota

Search for other papers by Zeinab Takbiri in
Current site
Google Scholar
PubMed
Close
,
Ardeshir Ebtehaj Department of Civil, Environmental and Geo-Engineering, and St. Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, Minnesota

Search for other papers by Ardeshir Ebtehaj in
Current site
Google Scholar
PubMed
Close
,
Efi Foufoula-Georgiou Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Efi Foufoula-Georgiou in
Current site
Google Scholar
PubMed
Close
,
Pierre-Emmanuel Kirstetter Advanced Radar Research Center, University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Pierre-Emmanuel Kirstetter in
Current site
Google Scholar
PubMed
Close
, and
F. Joseph Turk Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by F. Joseph Turk in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Monitoring changes of precipitation phase from space is important for understanding the mass balance of Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest neighbor approach for prognostic detection of precipitation and its phase using passive microwave observations from the Global Precipitation Measurement (GPM) satellite. The method uses the weighted Euclidean distance metric to search through an a priori database populated with coincident GPM radiometer and radar observations as well as ancillary snow-cover data. The algorithm performance is evaluated using data from GPM official precipitation products, ground-based radars, and high-fidelity simulations from the Weather Research and Forecasting Model. Using the presented approach, we demonstrate that the hit probability of terrestrial precipitation detection can reach to 0.80, while the probability of false alarm remains below 0.11. The algorithm demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular, the probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow cover, when compared to other surface types. The main reason is found to be related to the ability of the algorithm in capturing the signal of increased liquid water content in snowy clouds over radiometrically cold snow-covered surfaces.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zeinab Takbiri, takbi001@umn.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

Monitoring changes of precipitation phase from space is important for understanding the mass balance of Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest neighbor approach for prognostic detection of precipitation and its phase using passive microwave observations from the Global Precipitation Measurement (GPM) satellite. The method uses the weighted Euclidean distance metric to search through an a priori database populated with coincident GPM radiometer and radar observations as well as ancillary snow-cover data. The algorithm performance is evaluated using data from GPM official precipitation products, ground-based radars, and high-fidelity simulations from the Weather Research and Forecasting Model. Using the presented approach, we demonstrate that the hit probability of terrestrial precipitation detection can reach to 0.80, while the probability of false alarm remains below 0.11. The algorithm demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular, the probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow cover, when compared to other surface types. The main reason is found to be related to the ability of the algorithm in capturing the signal of increased liquid water content in snowy clouds over radiometrically cold snow-covered surfaces.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zeinab Takbiri, takbi001@umn.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Baggi, S., and J. Schweizer, 2009: Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Nat. Hazards, 50, 97108, https://doi.org/10.1007/s11069-008-9322-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F. W., and D. H. Staelin, 2003: AIRS/AMSU/HSB precipitation estimates. IEEE Trans. Geosci. Remote Sens., 41, 410417, https://doi.org/10.1109/TGRS.2002.808322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., J. J. Gourley, Y. Hong, Q. Cao, N. Carr, P.-E. Kirstetter, J. Zhang, and Z. Flamig, 2016: Using citizen science reports to evaluate estimates of surface precipitation type. Bull. Amer. Meteor. Soc., 97, 187193, https://doi.org/10.1175/BAMS-D-13-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Currier, W. R., T. Thorson, and J. D. Lundquist, 2017: Independent evaluation of frozen precipitation from WRF and PRISM in the Olympic Mountains. J. Hydrometeor., 18, 26812703, https://doi.org/10.1175/JHM-D-17-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, https://doi.org/10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., and C. D. Kummerow, 2017: Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the GPM satellite. Geophys. Res. Lett., 44, 61546162, https://doi.org/10.1002/2017GL073451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., R. L. Bras, and E. Foufoula-Georgiou, 2015: Shrunken locally linear embedding for passive microwave retrieval of precipitation. IEEE Trans. Geosci. Remote Sens., 53, 37203736, https://doi.org/10.1109/TGRS.2014.2382436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., R. L. Bras, and E. Foufoula-Georgiou, 2016: Evaluation of sharp passive rainfall retrievals over snow-covered land surfaces and coastal zones. J. Hydrometeor., 17, 10131029, https://doi.org/10.1175/JHM-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., and D. L. Wu, 2017: Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements. Atmos. Chem. Phys., 17, 27412757, https://doi.org/10.5194/acp-17-2741-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res., 96, 74237435, https://doi.org/10.1029/91JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 2008: Relationship between snow parameters and microwave satellite measurements: Theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz. J. Geophys. Res., 113, D22108, https://doi.org/10.1029/2007JD009685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181194, https://doi.org/10.1016/S0034-4257(02)00095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallikainen, M. T., F. T. Ulaby, and M. Abdelrazik, 1986: Dielectric properties of snow in the 3 to 37 GHz range. IEEE Trans. Antennas Propag., 34, 13291340, https://doi.org/10.1109/TAP.1986.1143757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallikainen, M. T., F. T. Ulaby, and T. E. Van Deventer, 1987: Extinction behavior of dry snow in the 18- to 90-GHz range. IEEE Trans. Geosci. Remote Sens., GE-25, 737745, https://doi.org/10.1109/TGRS.1987.289743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, J. A., and B. J. McNeil, 1982: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 2936, https://doi.org/10.1148/radiology.143.1.7063747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., M. L. Kaplan, P. Z. Klos, T. Link, J. P. McNamara, S. Rajagopal, R. Schumer, and C. M. Steele, 2017: Rain or snow: Hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci., 21, 122, https://doi.org/10.5194/hess-21-1-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2012: An overview of the precipitation retrieval algorithm for the dual-frequency precipitation radar (dpr) on the global precipitation measurement (gpm) mission’s core satellite. International Society for Optics and Photonics, 8528 (9), 85281C.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, M. Le, V. Chandrasekar, and T. Kubota, 2017: GPM/DPR level-2. Algorithm Theoretical Basis Doc., 81 pp., https://pmm.nasa.gov/sites/default/files/document_files/ATBD_DPR_201708_whole_1.pdf.

  • Karl, T. R., P. Ya. Groisman, R. W. Knight, and R. R. Heim Jr., 1993: Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J. Climate, 6, 13271344, https://doi.org/10.1175/1520-0442(1993)006<1327:RVOSCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, https://doi.org/10.1002/met.284.

  • Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrol. Processes, 22, 50675085, https://doi.org/10.1002/hyp.7131.

  • Kim, M.-J., J. A. Weinman, W. S. Olson, D.-E. Chang, G. Skofronick-Jackson, and J. R. Wang, 2008: A physical model to estimate snowfall over land using AMSU-B observations. J. Geophys. Res., 113, D09201, https://doi.org/10.1029/2007JD008589.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 13, 12851300, https://doi.org/10.1175/JHM-D-11-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, Q. Cao, M. Schwaller, and W. Petersen, 2014: Research framework to bridge from the Global Precipitation Measurement mission core satellite to the constellation sensors using ground-radar-based National Mosaic QPE. Remote Sensing of the Terrestrial Water Cycle, V. Lakshmi et al., Eds., John Wiley and Sons, 61–79, https://doi.org/10.1002/9781118872086.ch4.

    • Crossref
    • Export Citation
  • Kongoli, C., P. Pellegrino, R. R. Ferraro, N. C. Grody, and H. Meng, 2003: A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU). Geophys. Res. Lett., 30, 1756, https://doi.org/10.1029/2003GL017177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kongoli, C., H. Meng, J. Dong, and R. Ferraro, 2015: A snowfall detection algorithm over land utilizing high-frequency passive microwave measurements—Application to ATMS. J. Geophys. Res. Atmos., 120, 19181932, https://doi.org/10.1002/2014JD022427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2014: Evaluation of precipitation estimates by at-launch codes of GPM/DPR algorithms using synthetic data from TRMM/PR observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 39313944, https://doi.org/10.1109/JSTARS.2014.2320960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng, 2010: Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, https://doi.org/10.1175/2010JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., D. L. Randel, M. Kulie, N. Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., S. Laviola, and E. Cattani, 2011: Detection and measurement of snowfall from space. Remote Sens., 3, 145166, https://doi.org/10.3390/rs3010145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2008: Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations. Geophys. Res. Lett., 35, L19710, https://doi.org/10.1029/2008GL035427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 1998: A fast and accurate model for microwave radiance calculations. J. Meteor. Soc. Japan, 76, 335343, https://doi.org/10.2151/jmsj1965.76.2_335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, https://doi.org/10.1175/2008BAMS2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., and E.-K. Seo, 2013: Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach. J. Geophys. Res. Atmos., 118, 13761387, https://doi.org/10.1002/jgrd.50172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., D. Viviroli, D. Singh, A. Y. Hoekstra, and N. S. Diffenbaugh, 2015: The potential for snow to supply human water demand in the present and future. Environ. Res. Lett., 10, 114016, https://doi.org/10.1088/1748-9326/10/11/114016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and Coauthors, 2003: Regional environmental prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 84, 13531366, https://doi.org/10.1175/BAMS-84-10-1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuo, T., Y. Sasyo, and Y. Sato, 1981: Relationship between types of precipitation on the ground and surface meteorological elements. J. Meteor. Soc. Japan, 59, 462476, https://doi.org/10.2151/jmsj1965.59.4_462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949, https://doi.org/10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Motoyama, H., 1990: Simulation of seasonal snowcover based on air temperature and precipitation. J. Appl. Meteor., 29, 11041110, https://doi.org/10.1175/1520-0450(1990)029<1104:SOSSBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J. J., G. Liu, A. S. Jones, T. H. V. Haar, and T. H. Vonder Haar, 2009: Toward snowfall retrieval over land by combining satellite and in situ measurements. J. Geophys. Res., 114, D24205, https://doi.org/10.1029/2009JD012307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panegrossi, G., J. F. Rysman, D. Casella, A. C. Marra, P. Sanò, and M. S. Kulie, 2017: CloudSat-based assessment of GPM Microwave Imager snowfall observation capabilities. Remote Sens., 9, 1263, https://doi.org/10.3390/rs9121263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, G. T., and Coauthors, 2011: The unusual nature of recent snowpack declines in the North American Cordillera. Science, 333, 332335, https://doi.org/10.1126/science.1201570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., W. Huang, G. W. Petty, and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, https://doi.org/10.1175/2009JAS3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., W. B. Rossow, and E. Matthews, 1997: Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res., 102, 21 86721 890, https://doi.org/10.1029/97JD01360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radić, V., A. Bliss, A. C. Beedlow, R. Hock, E. Miles, and J. G. Cogley, 2014: Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dyn., 42, 3758, https://doi.org/10.1007/s00382-013-1719-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, https://doi.org/10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sims, E. M., and G. Liu, 2015: A parameterization of the probability of snow–rain transition. J. Hydrometeor., 16, 14661477, https://doi.org/10.1175/JHM-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and B. T. Johnson, 2011: Surface and atmospheric contributions to passive microwave brightness temperatures for falling snow events. J. Geophys. Res., 116, D02213, https://doi.org/10.1029/2010JD014438.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., M.-J. Kim, J. Weinman, and D.-E. Chang, 2004: A physical model to determine snowfall over land by microwave radiometry. IEEE Trans. Geosci. Remote Sens., 42, 10471058, https://doi.org/10.1109/TGRS.2004.825585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., B. T. Johnson, and S. J. Munchak, 2013: Detection thresholds of falling snow from satellite-borne active and passive sensors. IEEE Trans. Geosci. Remote Sens., 51, 41774189, https://doi.org/10.1109/TGRS.2012.2227763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., and F. W. Chen, 2000: Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans. Geosci. Remote Sens., 38, 23222332, https://doi.org/10.1109/36.868889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stiles, W. H., and F. T. Ulaby, 1980: The active and passive microwave response to snow parameters: 1. Wetness. J. Geophys. Res., 85, 1037, https://doi.org/10.1029/JC085iC02p01037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takbiri, Z., A. M. Ebtehaj, and E. Foufoula-Georgiou, 2017: A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval. Hydrol. Earth Syst. Sci., 21, 26852700, https://doi.org/10.5194/hess-21-2685-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, https://doi.org/10.1029/2010GL046008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., and W. H. Stiles, 1980: The active and passive microwave response to snow parameters: 2. Water equivalent of dry snow. J. Geophys. Res., 85, 10451049, https://doi.org/10.1029/JC085iC02p01045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2014: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ., 140, 3645, https://doi.org/10.1016/j.rse.2013.08.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., G. Liu, E. K. Seo, and Y. Fu, 2013: Liquid water in snowing clouds: Implications for satellite remote sensing of snowfall. Atmos. Res., 131, 6072, https://doi.org/10.1016/j.atmosres.2012.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., B. Yan, and N. C. Grody, 2001: A microwave land emissivity model. J. Geophys. Res., 106, 20 11520 123, https://doi.org/10.1029/2001JD900019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., J. Cohen, M. Rawlins, H. Ye, J. Cohen, and M. Rawlins, 2013: Discrimination of solid from liquid precipitation over northern Eurasia using surface atmospheric conditions. J. Hydrometeor., 14, 13451355, https://doi.org/10.1175/JHM-D-12-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, and R. Ferraro, 2015: A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure. J. Geophys. Res. Atmos., 120, 52955315, https://doi.org/10.1002/2014JD022534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and P. Meyers, 2016: A prototype precipitation retrieval algorithm over land for ATMS. J. Hydrometeor., 17, 16011621, https://doi.org/10.1175/JHM-D-15-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and S. Rudlosky, 2017: Quantifying the snowfall detection performance of the GPM Microwave Imager channels over land. J. Hydrometeor., 18, 729751, https://doi.org/10.1175/JHM-D-16-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future Plans. Bull. Amer. Meteor. Soc., 92, 13211338, https://doi.org/10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 929 476 28
PDF Downloads 382 101 17