Evaluation of Groundwater Simulations in Benin from the ALMIP2 Project

Mehnaz Rashid Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Mehnaz Rashid in
Current site
Google Scholar
PubMed
Close
,
Rong-You Chien Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Rong-You Chien in
Current site
Google Scholar
PubMed
Close
,
Agnès Ducharne Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Paris, France

Search for other papers by Agnès Ducharne in
Current site
Google Scholar
PubMed
Close
,
Hyungjun Kim Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Hyungjun Kim in
Current site
Google Scholar
PubMed
Close
,
Pat J.-F. Yeh Discipline of Civil Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia

Search for other papers by Pat J.-F. Yeh in
Current site
Google Scholar
PubMed
Close
,
Christophe Peugeot HSM, IRD, Université Montpellier, CNRS, Montpellier, France

Search for other papers by Christophe Peugeot in
Current site
Google Scholar
PubMed
Close
,
Aaron Boone CNRM Météo-France/CNRS, Toulouse, France

Search for other papers by Aaron Boone in
Current site
Google Scholar
PubMed
Close
,
Xiaogang He Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Xiaogang He in
Current site
Google Scholar
PubMed
Close
,
Luc Séguis HSM, IRD, Université Montpellier, CNRS, Montpellier, France

Search for other papers by Luc Séguis in
Current site
Google Scholar
PubMed
Close
,
Yutaro Yabu Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Yutaro Yabu in
Current site
Google Scholar
PubMed
Close
,
Moussa Boukari Laboratoire d’Hydrologie Appliquée, Université d’Abomey-Calavi, Cotonou, Benin

Search for other papers by Moussa Boukari in
Current site
Google Scholar
PubMed
Close
, and
Min-Hui Lo Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Min-Hui Lo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A comprehensive estimation of water budget components, particularly groundwater storage (GWS) and fluxes, is crucial. In this study, we evaluate the terrestrial water budget of the Donga basin (Benin, West Africa), as simulated by three land surface models (LSMs) used in the African Monsoon Multidisciplinary Analysis Land Surface Model Intercomparison Project, phase 2 (ALMIP2): CLM4, Catchment LSM (CLSM), and Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO). All three models include an unconfined groundwater component and are driven by the same ALMIP2 atmospheric forcing from 2005 to 2008. Results show that all three models simulate substantially shallower water table depth (WTD) with smaller seasonal variations, approximately 1–1.5 m compared to the observed values that range between 4 and 9.6 m, while the seasonal variations of GWS are overestimated by all the models. These seemingly contradictory simulation results can be explained by the overly high specific yield prescribed in all models. All models achieve similar GWS simulations but with different fractions of precipitation partitioning into surface runoff, base flow, and evapotranspiration (ET), suggesting high uncertainty and errors in the terrestrial and groundwater budgets among models. The poor performances of models can be attributed to bias in the hydrological partitioning (base flow vs surface runoff) and sparse subsurface data. This analysis confirms the importance of subsurface hydrological processes in the current generation of LSMs and calls for substantial improvement in both surface water budget (which controls groundwater recharge) and the groundwater system (hydrodynamic parameters, vertical geometry).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0025.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Min-Hui Lo, minhuilo@ntu.edu.tw

Abstract

A comprehensive estimation of water budget components, particularly groundwater storage (GWS) and fluxes, is crucial. In this study, we evaluate the terrestrial water budget of the Donga basin (Benin, West Africa), as simulated by three land surface models (LSMs) used in the African Monsoon Multidisciplinary Analysis Land Surface Model Intercomparison Project, phase 2 (ALMIP2): CLM4, Catchment LSM (CLSM), and Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO). All three models include an unconfined groundwater component and are driven by the same ALMIP2 atmospheric forcing from 2005 to 2008. Results show that all three models simulate substantially shallower water table depth (WTD) with smaller seasonal variations, approximately 1–1.5 m compared to the observed values that range between 4 and 9.6 m, while the seasonal variations of GWS are overestimated by all the models. These seemingly contradictory simulation results can be explained by the overly high specific yield prescribed in all models. All models achieve similar GWS simulations but with different fractions of precipitation partitioning into surface runoff, base flow, and evapotranspiration (ET), suggesting high uncertainty and errors in the terrestrial and groundwater budgets among models. The poor performances of models can be attributed to bias in the hydrological partitioning (base flow vs surface runoff) and sparse subsurface data. This analysis confirms the importance of subsurface hydrological processes in the current generation of LSMs and calls for substantial improvement in both surface water budget (which controls groundwater recharge) and the groundwater system (hydrodynamic parameters, vertical geometry).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0025.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Min-Hui Lo, minhuilo@ntu.edu.tw

Supplementary Materials

    • Supplemental Materials (PDF 382.12 KB)
Save
  • Alcamo, J., M. Flörke, and M. Märker, 2007: Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J., 52, 247275, https://doi.org/10.1623/hysj.52.2.247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altchenko, Y., and K. G. Villholth, 2015: Mapping irrigation potential from renewable groundwater in Africa—A quantitative hydrological approach. Hydrol. Earth Syst. Sci., 19, 10551067, https://doi.org/10.5194/hess-19-1055-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K. J., and M. J. Kirkby, 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369, https://doi.org/10.1080/02626667909491834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2009a: The AMMA Land Surface Model Intercomparison Project (ALMIP). Bull. Amer. Meteor. Soc., 90, 18651880, https://doi.org/10.1175/2009BAMS2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2009b: AMMA Land Surface Model Intercomparison Project phase 2 (ALMIP-2). GEWEX News, Vol. 9, No. 4, International GEWEX Project Office, Silver Spring, MD, 9–10.

  • Brunke, M. A., and Coauthors, 2016: Implementing and evaluating variable soil thickness in the Community Land Model, version 4.5 (CLM4.5). J. Climate, 29, 34413461, https://doi.org/10.1175/JCLI-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, X., Z.-L. Yang, Y. Xia, M. Huang, H. Wei, L. R. Leung, and M. B. Ek, 2014: Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J. Geophys. Res. Atmos., 119, 13 75113 770, https://doi.org/10.1002/2014JD022113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Graaf, I. E. M., R. L. P. H. van Beek, T. Gleeson, N. Moosdorf, O. Schmitz, E. H. Sutanudjaja, and M. F. P. Bierkens, 2017: A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Adv. Water Resour., 102, 5367, https://doi.org/10.1016/j.advwatres.2017.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depraetere, C., M. Gosset, S. Ploix, and H. Laurent, 2009: The organization and kinematics of tropical rainfall systems ground tracked at mesoscale with gages: First results from the campaigns 1999-2006 on the upper Ouémé valley (Benin). J. Hydrol., 375, 143160, https://doi.org/10.1016/j.jhydrol.2009.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döll, P., 2009: Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett., 4, 035006, https://doi.org/10.1088/1748-9326/4/3/035006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharne, A., 2009: Reducing scale dependence in TOPMODEL using a dimensionless topographic index. Hydrol. Earth Syst. Sci., 13, 23992412, https://doi.org/10.5194/hess-13-2399-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharne, A., R. D. Koster, M. J. Suarez, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J. Geophys. Res., 105, 24 82324 838, https://doi.org/10.1029/2000JD900328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, J., and Coauthors, 2014: Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA, 111, 32393244, https://doi.org/10.1073/pnas.1222474110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eva, H. D., Brink, A. B., and D. Simonetti, 2006: Monitoring land cover dynamics in sub-Saharan Africa. EU Publ. EUR 22498 EN, 57 pp.

  • Favreau, G., B. Cappelaere, S. Massuel, M. Leblanc, M. Boucher, N. Boulain, and C. Leduc, 2009: Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review. Water Resour. Res., 45, W00A16, https://doi.org/10.1029/2007WR006785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geiger, B., C. Meurey, D. Lajas, L. Franchisteguy, C. Dominique, and J.-L. Roujean, 2008: Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteor. Appl., 15, 411420, https://doi.org/10.1002/met.84.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getirana, A., A. Boone, and C. Peugeot, 2017: Streamflows over a West African basin from the ALMIP-2 model ensemble. J. Hydrometeor., 18, 18311845, https://doi.org/10.1175/JHM-D-16-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleeson, T., J. VanderSteen, M. A. Sophocleous, M. Taniguchi, W. M. Alley, D. M. Allen, and Y. Zhou, 2010: Groundwater sustainability strategies. Nat. Geosci., 3, 378379, https://doi.org/10.1038/ngeo881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grippa, M., and Coauthors, 2011: Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour. Res., 47, W05549, https://doi.org/10.1029/2009WR008856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grippa, M., and Coauthors, 2017: Modeling surface runoff and water fluxes over contrasted soils in pastoral Sahel: Evaluation of the ALMIP2 land surface models over the Gourma region in Mali. J. Hydrometeor., 18, 18471866, https://doi.org/10.1175/JHM-D-16-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurdak, J. J., 2017: Groundwater: Climate-induced pumping. Nat. Geosci., 10, 71, https://doi.org/10.1038/ngeo2885.

  • Guyot, A., J. M. Cohard, S. Anquetin, S. Galle, and C. R. Lloyd, 2009: Combined analysis of energy and water balances to estimate latent heat flux of a Sudanian small catchment. J. Hydrol., 375, 227240, https://doi.org/10.1016/j.jhydrol.2008.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habets, F., and Coauthors, 2013: Impact of climate change on surface water and ground water of two basins in northern France: Analysis of the uncertainties associated with climate and hydrological models, emission scenarios and downscaling methods. Climatic Change, 121, 771785, https://doi.org/10.1007/s10584-013-0934-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and S. Emori, Eds., 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep. 1, 34 pp.

  • He, X., and Coauthors, 2015: The diurnal cycle of precipitation in regional spectral model simulations over West Africa: Sensitivities to resolution and cumulus schemes. Wea. Forecasting, 30, 424445, https://doi.org/10.1175/WAF-D-14-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hector, B., L. Séguis, J. Hinderer, J. M. Cohard, M. Wubda, M. Descloitres, N. Benarrosh, and J. P. Boy, 2015: Water storage changes as a marker for base flow generation processes in a tropical humid basement catchment (Benin): Insights from hybrid gravimetry. Water Resour. Res., 51, 83318361, https://doi.org/10.1002/2014WR015773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasechko, S., and R. G. Taylor, 2015: Intensive rainfall recharges tropical groundwaters. Environ. Res. Lett., 10, 124015, https://doi.org/10.1088/1748-9326/10/12/124015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamagaté, B., L. Séguis, G. Favreau, J. L. Seidel, M. Descloitres, and P. Affaton, 2007: Processus et bilan des flux hydriques d’un bassin versant de milieu tropical de socle au Bénin (Donga, haut Ouémé). C. R. Geosci., 339, 418429, https://doi.org/10.1016/j.crte.2007.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaptue Tchuente, A. T., J. Roujean, and S. Faroux, 2010: ECOCLIMAP-II: An ecosystem classification and land surface parameters database of Western Africa at 1 km resolution for the African Monsoon Multidisciplinary Analysis (AMMA) project. Remote Sens. Environ., 114, 961976, https://doi.org/10.1016/j.rse.2009.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koirala, S., P. J. F. Yeh, Y. Hirabayashi, S. Kanae, and T. Oki, 2014: Global-scale land surface hydrologic modeling with the representation of water table dynamics. J. Geophys. Res. Atmos., 119, 7589, https://doi.org/10.1002/2013JD020398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 26972715, https://doi.org/10.1029/91JD01696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Le Barbé, L., T. Lebel, and D. Tapsoba, 2002: Rainfall variability in West Africa during the years 1950–90. J. Climate, 15, 187202, https://doi.org/10.1175/1520-0442(2002)015<0187:RVIWAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2009: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol., 375, 313, https://doi.org/10.1016/j.jhydrol.2009.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, B., K. Verdin, and A. Jarvis, 2008: New global hydrography derived from spaceborne elevation data. Eos, Trans. Amer. Geophys. Union, 89, 9394, https://doi.org/10.1029/2008EO100001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Lay, M., G. M. Saulnier, S. Galle, L. Séguis, M. Métadier, and C. Peugeot, 2008: Model representation of the Sudanian hydrological processes: Application on the Donga catchment (Benin). J. Hydrol., 363, 3241, https://doi.org/10.1016/j.jhydrol.2008.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., P. J.-F. Yeh, and J. S. Famiglietti, 2008: Constraining water table depth simulations in a land surface model using estimated baseflow. Adv. Water Resour., 31, 15521564, https://doi.org/10.1016/j.advwatres.2008.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., J. S. Famiglietti, P. J.-F. Yeh, and T. H. Syed, 2010: Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resour. Res., 46, W05517, https://doi.org/10.1029/2009WR007855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., C. M. Wu, H. Y. Ma, and J. S. Famiglietti, 2013: The response of coastal stratocumulus clouds to agricultural irrigation in California. J. Geophys. Res. Atmos., 118, 60446051, https://doi.org/10.1002/jgrd.50516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahé, G., and J. Paturel, 2009: 1896–2006 Sahelian annual rainfall variability and runoff increase of Sahelian rivers. C. R. Geosci., 341, 538546, https://doi.org/10.1016/j.crte.2009.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamadou, O., S. Galle, J.-M. Cohard, C. Peugeot, B. Kounouhewa, and A. Zannou, 2016: Dynamics of water vapor and energy exchanges above two contrasting ecosystems in Sudanian climate, northern Benin (West Africa). J. Geophys. Res. Atmos., 121, 269286, https://doi.org/10.1002/2016JD024749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, https://doi.org/10.1016/j.rse.2011.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndehedehe, C., J. Awange, N. Agutu, M. Kuhn, and B. Heck, 2016: Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Adv. Water Resour., 88, 211230, https://doi.org/10.1016/j.advwatres.2015.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, and L. E. Gulden, 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110, D21106, https://doi.org/10.1029/2005JD006111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

  • Panthou, G., T. Vischel, and T. Lebel, 2014: Recent trends in the regime of extreme rainfall in the central Sahel. Int. J. Climatol., 34, 39984006, https://doi.org/10.1002/joc.3984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelic, P., V. Smakhtin, G. Favreau, and K. G. Villholth, 2012: Water-balance approach for assessing potential for smallholder groundwater irrigation in sub-Saharan Africa. Water SA, 38, 399406, https://doi.org/10.4314/wsa.v38i3.5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokhrel, N. Y., S. Koirala, P. J.-F. Yeh, N. Hanasaki, L. Longuevvergne, S. Kanae, and T. Oki, 2015: Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour. Res., 51, 7896, https://doi.org/10.1002/2014WR015602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasul, G., and B. Sharma, 2016: The nexus approach to water–energy–food security: An option for adaptation to climate change. Climate Policy, 16, 682702, https://doi.org/10.1080/14693062.2015.1029865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746, https://doi.org/10.1175/BAMS-87-12-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richard, A., S. Galle, M. Descloitres, J. Cohard, J. Vandervaere, L. Séguis, and C. Peugeot, 2013: Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin). Hydrol. Earth Syst. Sci., 17, 50795096, https://doi.org/10.5194/hess-17-5079-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, C., A. Bhaduri, and R. Lawford, 2013: The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustainability, 5, 617624, https://doi.org/10.1016/j.cosust.2013.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Séguis, L., and Coauthors, 2011: Origins of streamflow in a crystalline basement catchment in a sub-humid Sudanian zone: The Donga basin (Benin, West Africa). Inter-annual variability of water budget. J. Hydrol., 402, 113, https://doi.org/10.1016/j.jhydrol.2011.01.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676705, https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., D. Rind, J. Famiglietti, and C. Rosenzweig, 1997: An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J. Climate, 10, 118137, https://doi.org/10.1175/1520-0442(1997)010<0118:AEATMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., and D. M. Lawrence, 2015: A GRACE-based assessment of interannual groundwater dynamics in the Community Land Model. Water Resour. Res., 51, 88178833, https://doi.org/10.1002/2015WR017582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., J. S. Pal, G. L. Wang, and P. J. Lawrence, 2016: Impact of land cover characterization on regional climate modeling over West Africa. Climate Dyn., 46, 637650, https://doi.org/10.1007/s00382-015-2603-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tadesse, T., and Coauthors, 2008: The need for integration of drought monitoring tools for proactive food security management in sub-Saharan Africa food security management in sub-Saharan Africa. Nat. Resour. Forum, 32, 265279, https://doi.org/10.1111/j.1477-8947.2008.00211.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, https://doi.org/10.1016/S0921-8181(03)00030-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, R., 2014: When wells run dry. Nature, 516, 179180, https://doi.org/10.1038/516179a.

  • United Nations, 2015: World population prospects: Key findings and advance tables—The 2015 revision. UN Department of Economic and Social Affairs Population Division Working Paper ESA/P/WP.241, 66 pp.

  • Vischel, T., G. Quantin, T. Lebel, J. Viarre, M. Gosset, F. Cazenave, and G. Panthou, 2011: Generation of high-resolution rain fields in West Africa: Evaluation of dynamic interpolation methods. J. Hydrometeor., 12, 14651482, https://doi.org/10.1175/JHM-D-10-05015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., P. Green, J. Salisbury, and R. Lammers, 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288, https://doi.org/10.1126/science.289.5477.284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vouillamoz, J. M., F. M. A. Lawson, N. Yalo, and M. Descloitres, 2015: Groundwater in hard rocks of Benin: Regional storage and buffer capacity in the face of change. J. Hydrol., 520, 379386, https://doi.org/10.1016/j.jhydrol.2014.11.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., and M. F. P. Bierkens, 2014: Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett., 9, 104003, https://doi.org/10.1088/1748-9326/9/10/104003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. P. H. Van Beek, C. M. Van Kempen, J. W. T. M. Reckman, S. Vasak, and M. F. P. Bierkens, 2010: Global depletion of groundwater resources. Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, https://doi.org/10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wey, H. W., M. H. Lo, S. Y. Lee, J. Y. Yu, and H. H. Hsu, 2015: Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates. Geophys. Res. Lett., 42, 86058614, https://doi.org/10.1002/2015GL065883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolock, D. M., and G. J. McCabe, 2000: Differences in topographic characteristics computed from 100- and 1000-m resolution digital elevation model data. Hydrol. Processes, 14, 9871002, https://doi.org/10.1002/(SICI)1099-1085(20000430)14:6<987::AID-HYP980>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., A. Boone, and C. M. Taylor, 2012: Review of recent developments and the future prospective in West African atmosphere/land interaction studies. Int. J. Geophys., 2012, 748921, https://doi.org/10.1155/2012/748921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, P. J. F., and E. A. B. Eltahir, 2005a: Representation of water table dynamics in a land surface scheme. Part I: Model development. J. Climate, 18, 18611880, https://doi.org/10.1175/JCLI3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, P. J. F., and E. A. B. Eltahir, 2005b: Representation of water table dynamics in a land surface scheme. Part II: Subgrid variability. J. Climate, 18, 18811901, https://doi.org/10.1175/JCLI3331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and M. Decker, 2009: Improving the numerical solution of soil moisture–based Richards equation for land models with a deep or shallow water table. J. Hydrometeor., 10, 308319, https://doi.org/10.1175/2008JHM1011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Y., Z. Xie, Y. Yu, S. Liu, L. Wang, J. Zou, P. Qin, and B. Jia, 2016: Effects of anthropogenic water regulation and groundwater lateral flow on land processes. J. Adv. Model. Earth Syst., 8, 11061131, https://doi.org/10.1002/2016MS000646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Y., Z. Xie, and J. Zou, 2017: Hydrologic and climatic responses to global anthropogenic groundwater extraction. J. Climate, 30, 7190, https://doi.org/10.1175/JCLI-D-16-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 645 199 20
PDF Downloads 429 84 8