The Importance of Near-Surface Winter Precipitation Processes in Complex Alpine Terrain

Franziska Gerber Laboratory of Cryospheric Sciences, School of Architecture and Civil Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, and WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Search for other papers by Franziska Gerber in
Current site
Google Scholar
PubMed
Close
,
Rebecca Mott Institute of Meteorology and Climate Research–Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology–Campus Alpin, Garmisch-Partenkirchen, Germany, and WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Search for other papers by Rebecca Mott in
Current site
Google Scholar
PubMed
Close
, and
Michael Lehning Laboratory of Cryospheric Sciences, School of Architecture and Civil Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, and WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Search for other papers by Michael Lehning in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, near-surface snow and graupel dynamics from formation to deposition are analyzed using WRF in a large-eddy configuration. The results reveal that a horizontal grid spacing of ≤50 m is required to resolve local orographic precipitation enhancement, leeside flow separation, and thereby preferential deposition. At this resolution, precipitation patterns across mountain ridges show a high temporal and spatial variability. Simulated and observed event-mean snow precipitation across three mountain ridges in the upper Dischma valley (Davos, Switzerland) for two precipitation events show distinct patterns, which are in agreement with theoretical concepts, such as small-scale orographic precipitation enhancement or preferential deposition. We found for our case study that overall terrain–flow–precipitation interactions increase snow accumulation on the leeward side of mountain ridges by approximately 26%–28% with respect to snow accumulation on the windward side of the ridge. Cloud dynamics and mean advection may locally increase precipitation on the leeward side of the ridge by up to about 20% with respect to event-mean precipitation across a mountain ridge. Analogously, near-surface particle–flow interactions, that is, preferential deposition, may locally enhance leeward snow precipitation on the order of 10%. We further found that overall effect and relative importance of terrain–flow–precipitation interactions are strongly dependent on atmospheric humidity and stability. Weak dynamic stability is important for graupel production, which is an essential component of solid winter precipitation. A comparison to smoothed measurements of snow depth change reveals a certain agreement with simulated precipitation across mountain ridges.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Franziska Gerber, gerberf@slf.ch

Abstract

In this study, near-surface snow and graupel dynamics from formation to deposition are analyzed using WRF in a large-eddy configuration. The results reveal that a horizontal grid spacing of ≤50 m is required to resolve local orographic precipitation enhancement, leeside flow separation, and thereby preferential deposition. At this resolution, precipitation patterns across mountain ridges show a high temporal and spatial variability. Simulated and observed event-mean snow precipitation across three mountain ridges in the upper Dischma valley (Davos, Switzerland) for two precipitation events show distinct patterns, which are in agreement with theoretical concepts, such as small-scale orographic precipitation enhancement or preferential deposition. We found for our case study that overall terrain–flow–precipitation interactions increase snow accumulation on the leeward side of mountain ridges by approximately 26%–28% with respect to snow accumulation on the windward side of the ridge. Cloud dynamics and mean advection may locally increase precipitation on the leeward side of the ridge by up to about 20% with respect to event-mean precipitation across a mountain ridge. Analogously, near-surface particle–flow interactions, that is, preferential deposition, may locally enhance leeward snow precipitation on the order of 10%. We further found that overall effect and relative importance of terrain–flow–precipitation interactions are strongly dependent on atmospheric humidity and stability. Weak dynamic stability is important for graupel production, which is an essential component of solid winter precipitation. A comparison to smoothed measurements of snow depth change reveals a certain agreement with simulated precipitation across mountain ridges.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Franziska Gerber, gerberf@slf.ch
Save
  • Banta, R. M., 1990: The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 229–283, https://doi.org.10.1007/978-1-935704-25-6_9.

    • Crossref
    • Export Citation
  • Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, https://doi.org/10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1965: On the low-level redistribution of atmospheric water caused by orography. Proc. Int. Cloud Physics, Tokyo, Japan, Amer. Meteor. Soc., 96–100.

  • Bernhardt, M., K. Schulz, G. Liston, and G. Zängl, 2012: The influence of lateral snow redistribution processes on snow melt and sublimation in alpine regions. J. Hydrol., 424–425, 196206, https://doi.org/10.1016/j.jhydrol.2012.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brauchli, T., E. Trujillo, H. Huwald, and M. Lehning, 2017: Influence of slope-scale snowmelt on catchment response simulated with the Alpine3d model. Water Resour. Res., 53, 10 72310 739, https://doi.org/10.1002/2017WR021278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, Y., M. Marty, L. Egli, J. Veitinger, T. Jonas, P. Thee, and C. Ginzler, 2015: Snow depth mapping in high-alpine catchments using digital photogrammetry. Cryosphere, 9, 229243, https://doi.org/10.5194/tc-9-229-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carruthers, D. J., and J. C. R. Hunt, 1990: Fluid mechanics of airflow over hills: Turbulence, fluxes, and waves in the boundary layer. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 83–107, https://doi.org/10.1007/978-1-935704-25-6_5.

    • Crossref
    • Export Citation
  • De Wekker, S. F. J., 2002: Structure and morphology of the convective boundary layer in mountainous terrain. Ph.D. thesis, Dept. of Earth and Ocean Sciences, University of British Colombia, 191 pp., https://doi.org/10.14288/1.0052567.

    • Crossref
    • Export Citation
  • Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715721, https://doi.org/10.1002/qj.49709641012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569, https://doi.org/10.1002/asl.153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, F., and V. Sharma, 2018: Running COSMO-WRF on very high resolution over complex terrain. Laboratory of Cryospheric Sciences, École Polytechnique Fédérale de Lausanne, https://doi.org/10.16904/envidat.35.

    • Crossref
    • Export Citation
  • Gerber, F., M. Lehning, S. W. Hoch, and R. Mott, 2017: A close-ridge small-scale atmospheric flow field and its influence on snow accumulation. J. Geophys. Res. Atmos., 122, 77377754, https://doi.org/10.1002/2016JD026258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, F., and Coauthors, 2018a: Spatial variability in snow precipitation and accumulation in COSMO-WRF simulations and radar estimations over complex terrain. Cryosphere, 12, 31373160, https://doi.org/10.5194/tc-12-3137-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, F., V. Sharma, R. Mott, M. Daniels, and M. Lehning, 2018b: DISCHMEX—High-resolution WRF simulations in complex alpine terrain and station measurements. Laboratory of Cryospheric Sciences, School of Architecture and Civil Engineering, École Polytechnique Fédérale de Lausanne, accessed 25 Jan 2019, https://doi.org/10.16904/envidat.50.

    • Crossref
    • Export Citation
  • Grazioli, J., G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne, 2015: Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014. Atmos. Chem. Phys., 15, 13 78713 802, https://doi.org/10.5194/acp-15-13787-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grünewald, T., and Coauthors, 2013: Statistical modelling of the snow depth distribution in open alpine terrain. Hydrol. Earth Syst. Sci., 17, 30053021, https://doi.org/10.5194/hess-17-3005-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grünewald, T., Y. Bühler, and M. Lehning, 2014: Elevation dependency of mountain snow depth. Cryosphere, 8, 23812394, https://doi.org/10.5194/tc-8-2381-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, https://doi.org/10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchner, P. B., R. C. Bales, N. P. Molotch, J. Flanagan, and Q. Guo, 2014: Lidar measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrol. Earth Syst. Sci., 18, 42614275, https://doi.org/10.5194/hess-18-4261-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehning, M., and R. Mott, 2016: Bodennahe atmosphärische Prozesse und ihre Wirkung auf die hochalpine Schneedecke. Promet Meteor. Fortbild., 98, 5967.

    • Search Google Scholar
    • Export Citation
  • Lehning, M., H. Löwe, M. Ryser, and N. Raderschall, 2008: Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resour. Res., 44, W07404, https://doi.org/10.1029/2007WR006545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mott, R., and M. Lehning, 2010: Meteorological modeling of very high-resolution wind fields and snow deposition for mountains. J. Hydrometeor., 11, 934949, https://doi.org/10.1175/2010JHM1216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mott, R., M. Schirmer, M. Bavay, T. Grünewald, and M. Lehning, 2010: Understanding snow-transport processes shaping the mountain snow-cover. Cryosphere, 4, 545559, https://doi.org/10.5194/tc-4-545-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mott, R., D. Scipión, M. Schneebeli, N. Dawes, A. Berne, and M. Lehning, 2014: Orographic effects on snow deposition patterns in mountainous terrain. J. Geophys. Res. Atmos., 119, 13631385, https://doi.org/10.1002/2013JD019880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mott, R., S. Schlögl, L. Dirks, and M. Lehning, 2017: Impact of extreme land surface heterogeneity on micrometeorology over spring snow cover. J. Hydrometeor., 18, 27052722, https://doi.org/10.1175/JHM-D-17-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontoppidan, M., J. Reuder, S. Mayer, and E. W. Kolstad, 2017: Downscaling an intense precipitation event in complex terrain: The importance of high grid resolution. Tellus, 69A, 1271561, https://doi.org/10.1080/16000870.2016.1271561.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richard, E., A. Buzzi, and G. Zängl, 2007: Quantitative precipitation forecasting in the Alps: The advances achieved by the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 831846, https://doi.org/10.1002/qj.65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, A., R. Hock, T. V. Schuler, P. A. Bieniek, M. Pelto, and A. Aschwanden, 2018: Modeling winter precipitation over the Juneau icefield, Alaska, using a linear model of orographic precipitation. Front. Earth Sci., 6, 20, https://doi.org/10.3389/feart.2018.00020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schirmer, M., V. Wirz, A. Clifton, and M. Lehning, 2011: Persistence in intra-annual snow depth distribution: 1. Measurements and topographic control. Water Resour. Res., 47, W09516, https://doi.org/10.1029/2010WR009426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlögl, S., M. Lehning, and R. Mott, 2018: Representation of horizontal transport processes in snowmelt modelling by applying a footprint approach. Front. Earth Sci., 6, 120, https://doi.org/10.3389/feart.2018.00120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommer, C. G., M. Lehning, and R. Mott, 2015: Snow in a very steep rock face: Accumulation and redistribution during and after a snowfall event. Front. Earth Sci., 3, 73, https://doi.org/10.3389/feart.2015.00073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., R. E. Stewart, G. Thompson, and J. M. Thériault, 2013: Microphysical processes within winter orographic cloud and precipitation systems. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer, 345–408, https://doi.org/10.1007/978-94-007-4098-3_7.

    • Crossref
    • Export Citation
  • Vionnet, V., E. Martin, V. Masson, C. Lac, F. Naaim Bouvet, and G. Guyomarc’h, 2017: High-resolution large eddy simulation of snow accumulation in alpine terrain. J. Geophys. Res. Atmos., 122, 11 00511 021, https://doi.org/10.1002/2017JD026947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vögeli, C., M. Lehning, N. Wever, and M. Bavay, 2016: Scaling precipitation input to spatially distributed hydrological models by measured snow distribution. Front. Earth Sci., 4, 108, https://doi.org/10.3389/feart.2016.00108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and N. Huang, 2017: Numerical simulation of the falling snow deposition over complex terrain. J. Geophys. Res. Atmos., 122, 9801000, https://doi.org/10.1002/2016JD025316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790, https://doi.org/10.1002/qj.49709640708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2007: Small-scale variability of orographic precipitation in the Alps: Case studies and semi-idealized numerical simulations. Quart. J. Roy. Meteor. Soc., 133, 17011716, https://doi.org/10.1002/qj.163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 695 234 6
PDF Downloads 334 95 3