Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau

Chi Zhang Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Chi Zhang in
Current site
Google Scholar
PubMed
Close
,
Qiuhong Tang Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Qiuhong Tang in
Current site
Google Scholar
PubMed
Close
,
Deliang Chen Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

Search for other papers by Deliang Chen in
Current site
Google Scholar
PubMed
Close
,
Ruud J. van der Ent Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands

Search for other papers by Ruud J. van der Ent in
Current site
Google Scholar
PubMed
Close
,
Xingcai Liu Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xingcai Liu in
Current site
Google Scholar
PubMed
Close
,
Wenhong Li Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina

Search for other papers by Wenhong Li in
Current site
Google Scholar
PubMed
Close
, and
Gebremedhin Gebremeskel Haile Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Gebremedhin Gebremeskel Haile in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation on the Tibetan Plateau (TP) showed different spatial changes during 1979–2016, with an increasing trend over the northern Tibetan Plateau (NTP) and a slightly negative trend over the southern Tibetan Plateau (STP). The changes in precipitation moisture sources over the NTP and STP are investigated using the improved Water Accounting Model with an atmospheric reanalysis as well as observational precipitation and evaporation data. The results show the region in the northwest (region NW), ranging from the TP to Europe dominated by the westerlies, provides 38.9% of precipitation moisture for the NTP, and the region in the southeast (region SE), ranging from the TP to the Indian Ocean and Indochina dominated by the Asian monsoons, provides 51.4% of precipitation moisture for the STP. For the precipitation increase over the NTP, the SE and TP are the main contributors, contributing around 35.8% and 51.7% of the increase, respectively. The contributions from the SE and TP to the STP are, however, minor and insignificant. Meanwhile, the NW shows a negative trend of −4.2 ± 2.9 mm yr−1 decade−1 (significant at the 0.01 level), which contributes to the negative precipitation trend over the STP. Results during the wet season indicate that moisture sources from the areas dominated by the Asian monsoons have contributed more precipitated moisture for the NTP, but not for the STP. Further analysis reveals that precipitated moisture originating from the Indian subcontinent has increased for the NTP while it has decreased for the STP during 1979–2016.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0094.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiuhong Tang, tangqh@igsnrr.ac.cn

Abstract

Precipitation on the Tibetan Plateau (TP) showed different spatial changes during 1979–2016, with an increasing trend over the northern Tibetan Plateau (NTP) and a slightly negative trend over the southern Tibetan Plateau (STP). The changes in precipitation moisture sources over the NTP and STP are investigated using the improved Water Accounting Model with an atmospheric reanalysis as well as observational precipitation and evaporation data. The results show the region in the northwest (region NW), ranging from the TP to Europe dominated by the westerlies, provides 38.9% of precipitation moisture for the NTP, and the region in the southeast (region SE), ranging from the TP to the Indian Ocean and Indochina dominated by the Asian monsoons, provides 51.4% of precipitation moisture for the STP. For the precipitation increase over the NTP, the SE and TP are the main contributors, contributing around 35.8% and 51.7% of the increase, respectively. The contributions from the SE and TP to the STP are, however, minor and insignificant. Meanwhile, the NW shows a negative trend of −4.2 ± 2.9 mm yr−1 decade−1 (significant at the 0.01 level), which contributes to the negative precipitation trend over the STP. Results during the wet season indicate that moisture sources from the areas dominated by the Asian monsoons have contributed more precipitated moisture for the NTP, but not for the STP. Further analysis reveals that precipitated moisture originating from the Indian subcontinent has increased for the NTP while it has decreased for the STP during 1979–2016.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0094.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiuhong Tang, tangqh@igsnrr.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 500.71 KB)
Save
  • An, W., and Coauthors, 2017: Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records. J. Geophys. Res. Atmos., 122, 12 54112 556, https://doi.org/10.1002/2017JD027235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kållberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, https://doi.org/10.1002/qj.864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bibi, S., L. Wang, X. Li, J. Zhou, D. Chen, and T. Yao, 2018: Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol., 38, e1e17, https://doi.org/10.1002/joc.5411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, https://doi.org/10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2002: On the vertical distribution of local and remote sources of water for precipitation. Meteor. Atmos. Phys., 80, 3141, https://doi.org/10.1007/s007030200012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X. Xu, S. Yang, and W. Zhang, 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 110, 423435, https://doi.org/10.1007/s00704-012-0641-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull., 60, 30253035, https://doi.org/10.1360/N972014-01370.

    • Search Google Scholar
    • Export Citation
  • Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, and F. Su, 2013: Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms. J. Climate, 26, 85109, https://doi.org/10.1175/JCLI-D-11-00738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., J. Wei, M. G. Bosilovich, and D. M. Mocko, 2014: Comparing evaporative sources of terrestrial precipitation and their extremes in MERRA using relative entropy. J. Hydrometeor., 15, 102116, https://doi.org/10.1175/JHM-D-13-053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1998: Description of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Feng, L., and T. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res., 117, D20114, https://doi.org/10.1029/2011JD017012.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., C. Lan, and Y. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Climate, 27, 18761893, https://doi.org/10.1175/JCLI-D-13-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., X. Li, L. R. Leung, D. Chen, and J. Xu, 2015: Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett., 10, 034013, https://doi.org/10.1088/1748-9326/10/3/034013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goessling, H. F., and C. H. Reick, 2013: On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture. Atmos. Chem. Phys., 13, 55675585, https://doi.org/10.5194/acp-13-5567-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and M. Ting, 2017: A dipole pattern of summertime rainfall across the indian subcontinent and the Tibetan Plateau. J. Climate, 30, 96079620, https://doi.org/10.1175/JCLI-D-16-0914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, P. W., R. J. van der Ent, L. J. Gordon, H. Hoff, R. Nikoli, and H. H. G. Savenije, 2012: Analyzing precipitation sheds to understand the vulnerability of rainfall dependent regions. Biogeosciences, 9, 733746, https://doi.org/10.5194/bg-9-733-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, P. W., E. A. Barnes, R. J. van der Ent, and L. J. Gordon, 2014: Variability of moisture recycling using a precipitationshed framework. Hydrol. Earth Syst. Sci., 18, 39373950, https://doi.org/10.5194/hess-18-3937-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, J. A., K. A. Hopping, E. T. Yeh, Y. Nyima, R. B. Boone, and K. A. Galvin, 2014: Unexpected climate impacts on the Tibetan Plateau: Local and scientific knowledge in findings of delayed summer. Global Environ. Change, 28, 141152, https://doi.org/10.1016/j.gloenvcha.2014.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knoche, H. R., and H. Kunstmann, 2013: Tracking atmospheric water pathways by direct evaporation tagging: A case study for West Africa. J. Geophys. Res. Atmos, 118, 12 34512 358, https://doi.org/10.1002/2013JD019976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krause, P., S. Biskop, J. Helmschrot, W.-A. Flügel, S. Kang, and T. Gao, 2010: Hydrological system analysis and modelling of the Nam Co basin in Tibet. Adv. Geosci., 27, 2936, https://doi.org/10.5194/adgeo-27-29-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, Y., and Coauthors, 2017: Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophys. Res. Lett., 44, 892900, https://doi.org/10.1002/2016GL072062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z. Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 28962909, https://doi.org/10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, https://doi.org/10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, https://doi.org/10.1029/2010GL046230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282, https://doi.org/10.1073/pnas.0910856107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, M., and Coauthors, 2015: Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 112, 92999304, https://doi.org/10.1073/pnas.1504418112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2005: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments. J. Hydrometeor., 6, 961984, https://doi.org/10.1175/JHM470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2014: Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J. Climate, 27, 24572474, https://doi.org/10.1175/JCLI-D-13-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Y. H. Ding, 2011: Responses of South and East Asian summer monsoons to different land–sea temperature increases under a warming scenario. Chin. Sci. Bull., 56, 27182726, https://doi.org/10.1007/s11434-011-4602-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., F. Su, D. Yang, L. Zhang, and Z. Hao, 2014: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265285, https://doi.org/10.1002/joc.3682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and O. A. Tuinenburg, 2017: The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci., 21, 779790, https://doi.org/10.5194/hess-21-779-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., O. A. Tuinenburg, H. R. Knoche, H. Kunstmann, and H. H. G. Savenije, 2013: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sci., 17, 48694884, https://doi.org/10.5194/hess-17-4869-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., L. Wang-Erlandsson, P. W. Keys, and H. H. G. Savenije, 2014: Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling. Earth Syst. Dyn., 5, 281326, https://doi.org/10.5194/esdd-5-281-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2012: Evaluation of multi-reanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, https://doi.org/10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wang, T., J. P. Miao, J. Q. Sun, and Y. H. Fu, 2018: Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 °C global warming target. Adv. Climate Change Res., 9, 102111, https://doi.org/10.1016/j.accre.2017.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, M. G. Bosilovich, and R. Wu, 2012: Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting. J. Geophys. Res., 117, D05126, https://doi.org/10.1029/2011JD016902.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, https://doi.org/10.1175/JAM2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., T. Zhao, C. Lu, Y. Guo, B. Chen, R. Liu, Y. Li, and X. Shi, 2014: An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos. Chem. Phys., 14, 11 28711 295, https://doi.org/10.5194/acp-14-11287-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., B. Ye, D. Zhou, B. Wu, T. Foken, J. Qin, and Z. Zhou, 2011: Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109, 517534, https://doi.org/10.1007/s10584-011-0099-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T. D., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T. D., and Coauthors, 2013: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys., 51, 525548, https://doi.org/10.1002/rog.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., S. Wu, D. Zhao, D. Zheng, and T. Pan, 2012: Impact of climate change on actual evapotranspiration on the Tibetan Plateau during 1981–2010 (in Chinese). Acta Geogr. Sin., 67 (11), 14711481.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Tang, and D. Chen, 2017a: Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Climate, 30, 18071819, https://doi.org/10.1175/JCLI-D-15-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Tang, D. Chen, L. Li, X. Liu, and H. Cui, 2017b: Tracing changes in atmospheric moisture supply to the drying southwest China. Atmos. Chem. Phys., 17, 10 38310 393, https://doi.org/10.5194/acp-17-10383-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Y. Zhang, J. Dong, and X. Xiao, 2013: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA, 110, 43094314, https://doi.org/10.1073/pnas.1210423110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and J. Zhu, 2015: Assessing quality of grid daily precipitation datasets in China in recent 50 years (in Chinese). Plateau Meteor., 24, 837845.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., J. Zhu, and Y. Xu, 2014: Establishment and assessment of the grid precipitation datasets in China for recent 50 years (in Chinese). J. Meteor. Sci., 34, 414420.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhang, Y. Yang, Y. Yang, and S. Han, 2013: Evaluation of anomalies in GLDAS-1996 dataset. Water Sci. Technol., 67, 17181727, https://doi.org/10.2166/wst.2013.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2016: Greening of the Earth and its drivers. Nat. Climate Change, 6, 791795, https://doi.org/10.1038/nclimate3004.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3025 905 138
PDF Downloads 2315 444 66