Impact of Future Climate and Vegetation on the Hydrology of an Arctic Headwater Basin at the Tundra–Taiga Transition

Sebastian A. Krogh Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Sebastian A. Krogh in
Current site
Google Scholar
PubMed
Close
and
John W. Pomeroy Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by John W. Pomeroy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The rapidly warming Arctic is experiencing permafrost degradation and shrub expansion. Future climate projections show a clear increase in mean annual temperature and increasing precipitation in the Arctic; however, the impact of these changes on hydrological cycling in Arctic headwater basins is poorly understood. This study investigates the impact of climate change, as represented by simulations using a high-resolution atmospheric model under a pseudo-global-warming configuration, and projected changes in vegetation, using a spatially distributed and physically based Arctic hydrological model, on a small headwater basin at the tundra–taiga transition in northwestern Canada. Climate projections under the RCP8.5 emission scenario show a 6.1°C warming, a 38% increase in annual precipitation, and a 19 W m−2 increase in all-wave annual irradiance over the twenty-first century. Hydrological modeling results suggest a shift in hydrological processes with maximum peak snow accumulation increasing by 70%, snow-cover duration shortening by 26 days, active layer deepening by 0.25 m, evapotranspiration increasing by 18%, and sublimation decreasing by 9%. This results in an intensification of the hydrological regime by doubling discharge volume, a 130% increase in spring runoff, and earlier and larger peak streamflow. Most hydrological changes were found to be driven by climate change; however, increasing vegetation cover and density reduced blowing snow redistribution and sublimation, and increased evaporation from intercepted rainfall. This study provides the first detailed investigation of projected changes in climate and vegetation on the hydrology of an Arctic headwater basin, and so it is expected to help inform larger-scale climate impact studies in the Arctic.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastian Krogh, seba.krogh@usask.ca

Abstract

The rapidly warming Arctic is experiencing permafrost degradation and shrub expansion. Future climate projections show a clear increase in mean annual temperature and increasing precipitation in the Arctic; however, the impact of these changes on hydrological cycling in Arctic headwater basins is poorly understood. This study investigates the impact of climate change, as represented by simulations using a high-resolution atmospheric model under a pseudo-global-warming configuration, and projected changes in vegetation, using a spatially distributed and physically based Arctic hydrological model, on a small headwater basin at the tundra–taiga transition in northwestern Canada. Climate projections under the RCP8.5 emission scenario show a 6.1°C warming, a 38% increase in annual precipitation, and a 19 W m−2 increase in all-wave annual irradiance over the twenty-first century. Hydrological modeling results suggest a shift in hydrological processes with maximum peak snow accumulation increasing by 70%, snow-cover duration shortening by 26 days, active layer deepening by 0.25 m, evapotranspiration increasing by 18%, and sublimation decreasing by 9%. This results in an intensification of the hydrological regime by doubling discharge volume, a 130% increase in spring runoff, and earlier and larger peak streamflow. Most hydrological changes were found to be driven by climate change; however, increasing vegetation cover and density reduced blowing snow redistribution and sublimation, and increased evaporation from intercepted rainfall. This study provides the first detailed investigation of projected changes in climate and vegetation on the hydrology of an Arctic headwater basin, and so it is expected to help inform larger-scale climate impact studies in the Arctic.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastian Krogh, seba.krogh@usask.ca
Save
  • Arheimer, B., and G. Lindström, 2015: Climate impact on floods: Changes of high flows in Sweden for the past and future (1911–2100). Hydrol. Earth Syst. Sci., 19, 771784, https://doi.org/10.5194/hess-19-771-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisson, E., K. Van Weverberg, and M. Demuzere, 2016: How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics?Climate Dyn., 47, 30433061, https://doi.org/10.1007/s00382-016-3012-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20, 15271532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, L., V. A. Alexeev, C. D. Arp, B. M. Jones, A. K. Liljedahl, and A. Gädeke, 2018: The polar WRF downscaled historical and projected twenty-first century climate for the coast and foothills of arctic Alaska. Front. Earth Sci., 5, 115, https://doi.org/10.3389/feart.2017.00111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, T. V., and Coauthors, 2011: The changing face of arctic snow cover: A synthesis of observed and projected changes. Ambio, 40, 1731, https://doi.org/10.1007/s13280-011-0212-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., S. R. Sobie, and T. Q. Murdock, 2015: Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Climate, 28, 69386959, https://doi.org/10.1175/JCLI-D-14-00754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flügel, W.-A., 1995: Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol. Processes, 9, 423436, https://doi.org/10.1002/hyp.3360090313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, https://doi.org/10.1007/s00382-014-2242-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, https://doi.org/10.1002/joc.1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, I., and S. Payette, 2004: Height growth response of tree line black spruce to recent climate warming across the forest-tundra of eastern Canada. J. Ecol., 92, 835845, https://doi.org/10.1111/j.0022-0477.2004.00913.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelfan, A., D. Gustafsson, Y. Motovilov, B. Arheimer, A. Kalugin, I. Krylenko, and A. Lavrenov, 2017: Climate change impact on the water regime of two great Arctic rivers: Modeling and uncertainty issues. Climatic Change, 141, 499515, https://doi.org/10.1007/s10584-016-1710-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K., D. Bromwich, L. Bai, M. Barlange, and A. Slater, 2011: Development and testing of polar WRF. Part III: Arctic land. J. Climate, 24, 2648, https://doi.org/10.1175/2010JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and D. L. Kane, 1992: Potential response of an Arctic watershed during a period of global warming. J. Geophys. Res., 97, 28112820, https://doi.org/10.1029/91JD01752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72, 251298, https://doi.org/10.1007/s10584-005-5352-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodson, D. L. R., S. P. E. Keeley, A. West, J. Ridley, E. Hawkins, and H. T. Hewitt, 2013: Identifying uncertainties in Arctic climate change projections. Climate Dyn., 40, 28492865, https://doi.org/10.1007/s00382-012-1512-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ju, J., and J. G. Masek, 2016: The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data. Remote Sens. Environ., 176, 116, https://doi.org/10.1016/j.rse.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, D. L., L. D. Hinzman, C. S. Benson, and G. E. Liston, 1991: Snow hydrology of a headwater arctic basin: 1. Physical measurements and process studies. Water Resour. Res., 27, 10991109, https://doi.org/10.1029/91WR00262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattsov, V. M., and Coauthors, 2005: Future climate change: Modeling and scenarios for the Arctic. Arctic Climate Impact Assessment, C. Symon, L. Arris, and B. Heal, Eds., Cambridge University Press, 99–150.

  • Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, and T. Yasunari, 2008: Downscaling of the climatic change in the mei-yu rainband in East Asia by a pseudo climate simulation method. SOLA, 4, 7376, https://doi.org/10.2151/sola.2008-019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, https://doi.org/10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., and Coauthors, 2017: Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Amer. Meteor. Soc., 98, 7993, https://doi.org/10.1175/BAMS-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogh, S. A., and J. W. Pomeroy, 2018: Recent changes to the hydrological cycle of an Arctic basin at the tundra–taiga transition. Hydrol. Earth Syst. Sci., 22, 39934014, https://doi.org/10.5194/hess-22-3993-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogh, S. A., J. W. Pomeroy, and P. Marsh, 2017: Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model. J. Hydrol., 550, 685703, https://doi.org/10.1016/j.jhydrol.2017.05.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lantz, T. C., P. Marsh, and S. V. Kokelj, 2013: Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems, 16, 4759, https://doi.org/10.1007/s10021-012-9595-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., S. Kurkute, E. Asong, and L. Chen, 2016: The western Canada high resolution WRF simulation. Changing Cold Region Network (CCRN) Special Observation and Analysis Period (SOAP) Synthesis Workshop, Saskatoon, SK, Canada, National Hydrology Research Centre, 17 pp., http://ccrnetwork.ca/science/workshops/soap-2016/files/SOAP_CCRN_OCT_2016.pdf.

  • Liston, G. E., and C. A. Hiemstra, 2011: The changing cryosphere: Pan-Arctic snow trends (1979–2009). J. Climate, 24, 56915712, https://doi.org/10.1175/JCLI-D-11-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., J. P. Mcfadden, M. Sturm, and R. a. Pielke, 2002: Modelled changes in Arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biol., 8, 1732, https://doi.org/10.1046/j.1354-1013.2001.00416.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., J. W. Pomeroy, J. Revuelto, and S. M. Vicente-Serrano, 2013: Response of snow processes to climate change: Spatial variability in a small basin in the Spanish Pyrenees. Hydrol. Processes, 27, 26372650, https://doi.org/10.1002/hyp.9408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., T. Yoshikane, M. Hara, Y. Wakazuki, H. G. Takahashi, and F. Kimura, 2010: Hydrological response to future climate change in the Agano River basin, Japan. Hydrol. Res. Lett., 4, 2529, https://doi.org/10.3178/hrl.4.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekis, É., and L. A. Vincent, 2011: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos.–Ocean, 49, 163177, https://doi.org/10.1080/07055900.2011.583910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., and Coauthors, 2015: Effects of hydrologic model choice and calibration on the portrayal of climate change impacts. J. Hydrometeor., 16, 762780, https://doi.org/10.1175/JHM-D-14-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., M. P. Clark, N. Mizukami, E. D. Gutmann, J. R. Arnold, L. D. Brekke, and B. Rajagopalan, 2016: How do hydrologic modeling decisions affect the portrayal of climate change impacts? Hydrol. Processes, 30, 10711095, https://doi.org/10.1002/hyp.10684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., M. P. Clark, C. Liu, K. Ikeda, and R. Rasmussen, 2017: Slower snowmelt in a warmer world. Nat. Climate Change, 7, 214219, https://doi.org/10.1038/nclimate3225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers-Smith, I. H., and Coauthors, 2011: Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett., 6, 045509, https://doi.org/10.1088/1748-9326/6/4/045509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. Wang, J. E. Walsh, and J. C. Stroeve, 2014: Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future, 2, 6874, https://doi.org/10.1002/2013EF000162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payette, S., and L. Filion, 1985: White spruce expansion at the tree line and recent climatic change. Can. J. For. Res., 15, 241251, https://doi.org/10.1139/x85-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, S., P. Marsh, and B. R. Bonsal, 2007: Modeling the impact of climate change on runoff and annual water balance of an arctic headwater basin. Arctic, 60, 173186, https://doi.org/10.14430/arctic242.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and P. Marsh, 1997: The application of remote sensing and a blowing snow model to determine snow water equivalent over northern basins. Applications of Remote Sensing in Hydrology, Third International Workshop, G.W. Kite, A. Pietroniro, and T.J. Pultz, Eds., NHRI Symposium, No. 17, National Hydrology Research Institute, 253–270.

  • Pomeroy, J. W., and L. Li, 2000: Prairie and Arctic areal snow cover mass balance using a blowing snow model. J. Geophys. Res., 105, 26 61926 634, https://doi.org/10.1029/2000JD900149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., P. Marsh, and D. M. Gray, 1997: Application of a distributed blowing snow model to the Arctic. Hydrol. Processes, 11, 14511464, https://doi.org/10.1002/(SICI)1099-1085(199709)11:11<1451::AID-HYP449>3.0.CO;2-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., D. M. Gray, T. Brown, N. R. Hedstrom, W. L. Quinton, R. J. Granger, and S. K. Carey, 2007: The cold regions hydrological model: A platform for basing process representation and model structure on physical evidence. Hydrol. Processes, 21, 26502667, https://doi.org/10.1002/hyp.6787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., D. M. Gray, and P. Marsh, 2008: Studies on snow redistribution by wind and forest, snow-covered area depletion, and frozen soil infiltration in northern and western Canada. Cold Region Atmospheric and Hydrologic Studies: The Mackenzie GEWEX Experience, Vol. 2, M. Woo, Ed., Springer, 81–96, https://doi.org/10.1007/978-3-540-75136-6_5.

    • Crossref
    • Export Citation
  • Pomeroy, J. W., M. Bernhardt, and D. Marks, 2015a: Research network to track alpine water. Nature, 521, 3232, https://doi.org/10.1038/521032c.

  • Pomeroy, J. W., X. Fang, and K. Rasouli, 2015b: Sensitivity of snow processes to warming in the Canadian Rockies. 72nd Eastern Snow Conf., Sherbrooke, QC, Canada, Eastern Snow Conference, 22–33.

  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasouli, K., J. W. Pomeroy, J. R. Janowicz, S. K. Carey, and T. J. Williams, 2014: Hydrological sensitivity of a northern mountain basin to climate change. Hydrol. Processes, 28, 41915208, https://doi.org/10.1002/hyp.10244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, https://doi.org/10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Suarez, F., D. Binkley, M. W. Kaye, and R. Stottlemyer, 1999: Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. Ecoscience, 6, 465470, https://doi.org/10.1080/11956860.1999.11682538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolson, B. A., and C. A. Shoemaker, 2007: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res., 43, W01413, https://doi.org/10.1029/2005WR004723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Walvoord, M. A., C. I. Voss, and T. P. Wellman, 2012: Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour. Res., 48, 117, https://doi.org/10.1029/2011WR011595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanishsakpong, W., N. McNeil, and K. A. Notodiputro, 2016: Trend and pattern classification of surface air temperature change in the Arctic region. Atmos. Sci. Lett., 17, 378383, https://doi.org/10.1002/asl.668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitfield, P. H., A. W. Hall, and A. J. Cannon, 2004: Changes in the seasonal cycle in the circumpolar Arctic, 1976–95: Temperature and precipitation. Arctic, 57, 8093, https://doi.org/10.14430/arctic485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1, 8083, https://doi.org/10.2307/3001968.

  • Woo, M., M. Mollinga, and S. L. Smith, 2007: Climate warming and active layer thaw in the boreal and tundra environments of the Mackenzie Valley. Can. J. Earth Sci., 44, 733743, https://doi.org/10.1139/e06-121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and Coauthors, 2013: Temperature and vegetation seasonality diminishment over northern lands. Nat. Climate Change, 3, 581586, https://doi.org/10.1038/nclimate1836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., P. A. Miller, B. Smith, R. Wania, T. Koenigk, and R. Döscher, 2013: Tundra shrubification and tree-line advance amplify arctic climate warming: Results from an individual-based dynamic vegetation model. Environ. Res. Lett., 8, 034023, https://doi.org/10.1088/1748-9326/8/3/034023.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2665 1654 469
PDF Downloads 947 150 15