A Deterministic Approach for Approximating the Diurnal Cycle of Precipitation for Use in Large-Scale Hydrological Modeling

Theodore J. Bohn Julie Ann Wrigley Global Institute of Sustainability, and School of Earth and Space Exploration, Arizona State University, Tempe, Arizona

Search for other papers by Theodore J. Bohn in
Current site
Google Scholar
PubMed
Close
,
Kristen M. Whitney School of Earth and Space Exploration, Arizona State University, Tempe, Arizona

Search for other papers by Kristen M. Whitney in
Current site
Google Scholar
PubMed
Close
,
Giuseppe Mascaro School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona

Search for other papers by Giuseppe Mascaro in
Current site
Google Scholar
PubMed
Close
, and
Enrique R. Vivoni School of Earth and Space Exploration, and School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona

Search for other papers by Enrique R. Vivoni in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate characterization of precipitation P at subdaily temporal resolution is important for a wide range of hydrological applications, yet large-scale gridded observational datasets primarily contain daily total P. Unfortunately, a widely used deterministic approach that disaggregates P uniformly over the day grossly mischaracterizes the diurnal cycle of P, leading to potential biases in simulated runoff Q. Here we present Precipitation Isosceles Triangle (PITRI), a two-parameter deterministic approach in which the hourly hyetograph is modeled with an isosceles triangle with prescribed duration and time of peak intensity. Monthly duration and peak time were derived from meteorological observations at U.S. Climate Reference Network (USCRN) stations and extended across the United States, Mexico, and southern Canada at 6-km resolution via linear regression against historical climate statistics. Across the USCRN network (years 2000–13), simulations using the Variable Infiltration Capacity (VIC) model, driven by P disaggregated via PITRI, yielded nearly unbiased estimates of annual Q relative to simulations driven by observed P. In contrast, simulations using the uniform method had a Q bias of −11%, through overestimating canopy evaporation and underestimating throughfall. One limitation of the PITRI approach is a potential bias in snow accumulation when a high proportion of P falls on days with a mix of temperatures above and below freezing, for which the partitioning of P into rain and snow is sensitive to event timing within the diurnal cycle. Nevertheless, the good overall performance of PITRI suggests that a deterministic approach may be sufficiently accurate for large-scale hydrologic applications.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0203.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theodore J. Bohn, theodore.bohn@asu.edu

Abstract

Accurate characterization of precipitation P at subdaily temporal resolution is important for a wide range of hydrological applications, yet large-scale gridded observational datasets primarily contain daily total P. Unfortunately, a widely used deterministic approach that disaggregates P uniformly over the day grossly mischaracterizes the diurnal cycle of P, leading to potential biases in simulated runoff Q. Here we present Precipitation Isosceles Triangle (PITRI), a two-parameter deterministic approach in which the hourly hyetograph is modeled with an isosceles triangle with prescribed duration and time of peak intensity. Monthly duration and peak time were derived from meteorological observations at U.S. Climate Reference Network (USCRN) stations and extended across the United States, Mexico, and southern Canada at 6-km resolution via linear regression against historical climate statistics. Across the USCRN network (years 2000–13), simulations using the Variable Infiltration Capacity (VIC) model, driven by P disaggregated via PITRI, yielded nearly unbiased estimates of annual Q relative to simulations driven by observed P. In contrast, simulations using the uniform method had a Q bias of −11%, through overestimating canopy evaporation and underestimating throughfall. One limitation of the PITRI approach is a potential bias in snow accumulation when a high proportion of P falls on days with a mix of temperatures above and below freezing, for which the partitioning of P into rain and snow is sensitive to event timing within the diurnal cycle. Nevertheless, the good overall performance of PITRI suggests that a deterministic approach may be sufficiently accurate for large-scale hydrologic applications.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0203.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theodore J. Bohn, theodore.bohn@asu.edu

Supplementary Materials

    • Supplemental Materials (PDF 696.84 KB)
Save
  • Adam, J. C., E. A. Clark, D. P. Lettenmaier, and E. F. Wood, 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538, https://doi.org/10.1175/JCLI3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alduchov, O. A., and R. E. Eskridge, 1996: Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteor., 35, 601609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, https://doi.org/10.1175/JHM450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., P. Storck, and D. P. Lettenmaier, 2009: Modeling snow accumulation and ablation processes in forested environments. Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnaud, P., and J. Lavabre, 1999: Using a stochastic model for generating hourly hyetographs to study extreme rainfalls. Hydrol. Sci. J., 44, 433446, https://doi.org/10.1080/02626669909492238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnaud, P., and J. Lavabre, 2002: Coupled rainfall model and discharge model for flood frequency estimation. Water Resour. Res., 38, 1075, https://doi.org/10.1029/2001WR000474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., and J. R. Williams, 1989: Stochastic generation of internal storm structure at a point. Trans. ASAE, 32, 01610167, https://doi.org/10.13031/2013.30976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, J. E., 1994: The influence of storm temporal patterns on catchment response. J. Hydrol., 158, 285303, https://doi.org/10.1016/0022-1694(94)90058-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A., J. J. Hamman, B. Nijssen, E. A. Clark, and K. M. Andreadis, 2018: UW-Hydro/MetSim: Version 1.1.0. Zenodo, accessed 7 June 2018, http://doi.org/10.5281/zenodo.1256120.

    • Crossref
    • Export Citation
  • Bohn, T. J., and E. R. Vivoni, 2016: Process-based characterization of evapotranspiration sources over the North American monsoon region. Water Resour. Res., 52, 358384, https://doi.org/10.1002/2015WR017934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., B. Livneh, J. W. Oyler, S. W. Running, B. Nijssen, and D. P. Lettenmaier, 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, https://doi.org/10.1016/j.agrformet.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., K. M. Whitney, G. Mascaro, and E. R. Vivoni, 2018: Parameters for PITRI precipitation temporal disaggregation over continental US, Mexico, and southern Canada, 1981–2013 (version 1). Zenodo, accessed 13 February 2019, https://doi.org/10.5281/zenodo.1402222.

    • Crossref
    • Export Citation
  • Bonnin, G. M., D. Martin, B. Lin, T. Parzybok, M. Yekta, D. Riley, D. Brewer, and L. Hiner, 2007: Updates to NOAA precipitation frequency atlases. World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, K. C. Kabbes, Ed., ASCE, 1–10, https://doi.org/10.1061/40927(243)413.

    • Crossref
    • Export Citation
  • Brooks, R. H., and A. T. Corey, 1964: Hydraulic properties of porous media and their relation to drainage design. Trans. ASAE, 7, 00260028, https://doi.org/10.13031/2013.40684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., T. Das, D. W. Pierce, T. P. Barnett, M. Tyree, and A. Gershunov, 2010: Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA, 107, 21 27121 276, https://doi.org/10.1073/pnas.0912391107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., A. W. Wood, N. Voisin, D. P. Lettenmaier, and R. N. Palmer, 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, https://doi.org/10.1023/B:CLIM.0000013684.13621.1f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, R., J. Schirmer, and P. Dunn, 1998: A daily rainfall disaggregation model. Agric. For. Meteor., 92, 105117, https://doi.org/10.1016/S0168-1923(98)00088-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deidda, R., R. Benzi, and F. Siccardi, 1999: Multifractal modeling of anomalous scaling laws in rainfall. Water Resour. Res., 35, 18531867, https://doi.org/10.1029/1999WR900036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domínguez-Mora, R., M. Arganis-Juárez, A. Mendoza-Reséndiz, E. Carrizosa-Elizondo, H. Guzmán-García, B. Echavarría-Soto, and J. Baños-Martínez, 2014: Time and spatial synthetic hourly rainfall generation in the Basin of Mexico. Int. J. River Basin Manage., 12, 367375, https://doi.org/10.1080/15715124.2013.842574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El-Jabi, N., and S. Sarraf, 1991: Effect of maximum rainfall position on rainfall-runoff relationship. J. Hydraul. Eng., 117, 681685, https://doi.org/10.1061/(ASCE)0733-9429(1991)117:5(681).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO/UNESCO, 1998: Digital soil map of the world and derived soil properties. Accessed 1 January 2018, http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/.

  • Fatichi, S., and Coauthors, 2016: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J. Hydrol., 537, 4560, https://doi.org/10.1016/j.jhydrol.2016.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franchini, M., and M. Pacciani, 1991: Comparative analysis of several conceptual rainfall-runoff models. J. Hydrol., 122, 161219, https://doi.org/10.1016/0022-1694(91)90178-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grassotti, C., R. N. Hoffman, E. R. Vivoni, and D. Entekhabi, 2003: Multiple-timescale intercomparison of two radar products and rain gauge observations over the Arkansas–Red River basin. Wea. Forecasting, 18, 12071229, https://doi.org/10.1175/1520-0434(2003)018<1207:MIOTRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimaldi, S., and F. Serinaldi, 2006: Design hyetograph analysis with 3-copula function. Hydrol. Sci. J., 51, 223238, https://doi.org/10.1623/hysj.51.2.223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark, 2008: The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5, 317, https://doi.org/10.1007/s10346-007-0112-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 1999: Effects of climate change on hydrology and water resources in the Columbia River Basin. J. Amer. Water Resour. Assoc., 35, 15971623, https://doi.org/10.1111/j.1752-1688.1999.tb04240.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier, 2005: Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Climate, 18, 45454561, https://doi.org/10.1175/JCLI3538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamman, J. J., B. Nijssen, T. J. Bohn, D. R. Gergel, and Y. Mao, 2018: The Variable Infiltration Capacity Model, version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model Dev., 11, 34813496, https://doi.org/10.5194/gmd-11-3481-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M., R. DeFries, J. R. Townshend, and R. Sohlberg, 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, https://doi.org/10.1080/014311600210209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huff, F. A., 1967: Time distribution of rainfall in heavy storms. Water Resour. Res., 3, 10071019, https://doi.org/10.1029/WR003i004p01007.

  • Jennings, K. S., T. S. Winchell, B. Livneh, and N. P. Molotch, 2018: Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and M. B. Parlange, 1995: Generalizations of chain-dependent processes: Application to hourly precipitation. Water Resour. Res., 31, 13311341, https://doi.org/10.1029/94WR03152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931312, https://doi.org/10.1175/1520-0477(1993)074<1293:ADOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambourne, J., and D. Stephenson, 1987: Model study of the effect of temporal storm distributions on peak discharges and volumes. Hydrol. Sci. J., 32, 215226, https://doi.org/10.1080/02626668709491179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013. Nat. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., A. Winstral, M. Reba, J. Pomeroy, and M. Kumar, 2013: An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour., 55, 98110, https://doi.org/10.1016/j.advwatres.2012.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mascaro, G., 2017: Multiscale spatial and temporal statistical properties of rainfall in central Arizona. J. Hydrometeor., 18, 227245, https://doi.org/10.1175/JHM-D-16-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mascaro, G., E. R. Vivoni, D. J. Gochis, C. J. Watts, and J. C. Rodriguez, 2014: Temporal downscaling and statistical analysis of rainfall across a topographic transect in northwest Mexico. J. Appl. Meteor. Climatol., 53, 910927, https://doi.org/10.1175/JAMC-D-13-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E., A. Wood, J. Adam, D. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205–234.

  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3950, https://doi.org/10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, H., and U. Haberlandt, 2015: Temporal rainfall disaggregation with a cascade model: From single-station disaggregation to spatial rainfall. J. Hydrol. Eng., 20, 04015026, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., R. Ramakrishna, R. Nemani, and S. W. Running, 1997: Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35, 13801393, https://doi.org/10.1109/36.649788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., G. M. O’donnell, A. F. Hamlet, and D. P. Lettenmaier, 2001a: Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50, 143175, https://doi.org/10.1023/A:1010616428763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., R. Schnur, and D. P. Lettenmaier, 2001b: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J. Climate, 14, 17901808, https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsson, J., 1998: Evaluation of a scaling cascade model for temporal rain-fall disaggregation. Hydrol. Earth Syst. Sci., 2, 1930, https://doi.org/10.5194/hess-2-19-1998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paniconi, C., and M. Putti, 2015: Physically based modeling in catchment hydrology at 50: Survey and outlook. Water Resour. Res., 51, 70907129, https://doi.org/10.1002/2015WR017780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., and E. Foufoula-Georgiou, 1996: Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J. Geophys. Res., 101, 26 34726 361, https://doi.org/10.1029/96JD01870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 48, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., V. K. Gupta, and E. Waymire, 1984: Scale considerations in the modeling of temporal rainfall. Water Resour. Res., 20, 16111619, https://doi.org/10.1029/WR020i011p01611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner-McGraw, A. P., and E. R. Vivoni, 2018: On the sensitivity of hillslope runoff and channel transmission losses in arid piedmont slopes. Water Resour. Res., 54, 44984518. https://doi.org/10.1029/2018WR022842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D., 1984: Kinematic study of effects of storm dynamics on runoff hydrographs. Water SA, 10, 189196.

  • Todini, E., 1988: Rainfall-runoff modeling—Past, present and future. J. Hydrol., 100, 341352, https://doi.org/10.1016/0022-1694(88)90191-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., T. Das, and D. P. Lettenmaier, 2012: Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J. Hydrometeor., 13, 932949, https://doi.org/10.1175/JHM-D-11-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venugopal, V., E. Foufoula-Georgiou, and V. Sapozhnikov, 1999: A space-time downscaling model for rainfall. J. Geophys. Res., 104, 19 70519 721, https://doi.org/10.1029/1999JD900338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, https://doi.org/10.1126/science.1128834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier, 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679, https://doi.org/10.1029/94WR00436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wüest, M., C. Frei, A. Altenhoff, M. Hagen, M. Litschi, and C. Schär, 2010: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int. J. Climatol., 30, 17641775, https://doi.org/10.1002/joc.2025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., and D. P. Lettenmaier, 2007: Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J. Climate, 20, 19361946, https://doi.org/10.1175/JCLI4086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1709 832 152
PDF Downloads 704 203 11