Enhancing the Structure of the WRF-Hydro Hydrologic Model for Semiarid Environments

Timothy M. Lahmers Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Timothy M. Lahmers in
Current site
Google Scholar
PubMed
Close
,
Hoshin Gupta Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Hoshin Gupta in
Current site
Google Scholar
PubMed
Close
,
Christopher L. Castro Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Christopher L. Castro in
Current site
Google Scholar
PubMed
Close
,
David J. Gochis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David J. Gochis in
Current site
Google Scholar
PubMed
Close
,
David Yates National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David Yates in
Current site
Google Scholar
PubMed
Close
,
Aubrey Dugger National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aubrey Dugger in
Current site
Google Scholar
PubMed
Close
,
David Goodrich Southwest Watershed Research Center, Agricultural Research Service, U.S. Department of Agriculture, Tucson, Arizona

Search for other papers by David Goodrich in
Current site
Google Scholar
PubMed
Close
, and
Pieter Hazenberg Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Pieter Hazenberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In August 2016, the National Weather Service Office of Water Prediction (NWS/OWP) of the National Oceanic and Atmospheric Administration (NOAA) implemented the operational National Water Model (NWM) to simulate and forecast streamflow, soil moisture, and other model states throughout the contiguous United States. Based on the architecture of the WRF-Hydro hydrologic model, the NWM does not currently resolve channel infiltration, an important component of the water balance of the semiarid western United States. Here, we demonstrate the benefit of implementing a conceptual channel infiltration function (from the KINEROS2 semidistributed hydrologic model) into the WRF-Hydro model architecture, configured as NWM v1.1. After calibration, the updated WRF-Hydro model exhibits reduced streamflow errors for the Walnut Gulch Experimental Watershed (WGEW) and the Babocomari River in southeast Arizona. Model calibration was performed using NLDAS-2 atmospheric forcing, available from the NOAA National Centers for Environmental Prediction (NCEP), paired with precipitation forcing from NLDAS-2, NCEP Stage IV, or local gauge precipitation. Including channel infiltration within WRF-Hydro results in a physically realistic hydrologic response in the WGEW, when the model is forced with high-resolution, gauge-based precipitation in lieu of a national product. The value of accounting for channel loss is also demonstrated in the Babocomari basin, where the drainage area is greater and the cumulative effect of channel infiltration is more important. Accounting for channel infiltration loss thus improves the streamflow behavior simulated by the calibrated model and reduces evapotranspiration bias when gauge precipitation is used as forcing. However, calibration also results in increased high soil moisture bias, which is likely due to underlying limitations of the NWM structure and calibration methodology.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0064.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy Lahmers, timothylahmers@email.arizona.edu

Abstract

In August 2016, the National Weather Service Office of Water Prediction (NWS/OWP) of the National Oceanic and Atmospheric Administration (NOAA) implemented the operational National Water Model (NWM) to simulate and forecast streamflow, soil moisture, and other model states throughout the contiguous United States. Based on the architecture of the WRF-Hydro hydrologic model, the NWM does not currently resolve channel infiltration, an important component of the water balance of the semiarid western United States. Here, we demonstrate the benefit of implementing a conceptual channel infiltration function (from the KINEROS2 semidistributed hydrologic model) into the WRF-Hydro model architecture, configured as NWM v1.1. After calibration, the updated WRF-Hydro model exhibits reduced streamflow errors for the Walnut Gulch Experimental Watershed (WGEW) and the Babocomari River in southeast Arizona. Model calibration was performed using NLDAS-2 atmospheric forcing, available from the NOAA National Centers for Environmental Prediction (NCEP), paired with precipitation forcing from NLDAS-2, NCEP Stage IV, or local gauge precipitation. Including channel infiltration within WRF-Hydro results in a physically realistic hydrologic response in the WGEW, when the model is forced with high-resolution, gauge-based precipitation in lieu of a national product. The value of accounting for channel loss is also demonstrated in the Babocomari basin, where the drainage area is greater and the cumulative effect of channel infiltration is more important. Accounting for channel infiltration loss thus improves the streamflow behavior simulated by the calibrated model and reduces evapotranspiration bias when gauge precipitation is used as forcing. However, calibration also results in increased high soil moisture bias, which is likely due to underlying limitations of the NWM structure and calibration methodology.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0064.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy Lahmers, timothylahmers@email.arizona.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.16 MB)
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American Monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American Monsoon System. J. Climate, 22, 42134227, https://doi.org/10.1175/2009JCLI2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blasch, K., T. P. Ferré, J. Hoffmann, D. Poll, M. Baily, and J. Cordova, 2004: Processes controlling recharge beneath ephemeral streams in southern Arizona. Groundwater Recharge in a Desert Environment: The Southwestern United States, J. F. Hogan, F. M. Phillips and B. R. Scanlon, Eds., Water Science and Application Series, Vol. 9, Amer. Geophys. Union, 69–76.

    • Crossref
    • Export Citation
  • Blöschl, G., C. Reszler, and J. Komma, 2008: A spatially distributed flash flood forecasting model. Environ. Modell. Software, 23, 464478, https://doi.org/10.1016/j.envsoft.2007.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P., P. A. Troch, M. Schaffner, C. Unkrich, and D. Goodrich, 2014: An all-season flash flood forecasting system for real-time operations. Bull. Amer. Meteor. Soc., 95, 399407, https://doi.org/10.1175/BAMS-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callegary, J. B., J. M. Leenhouts, N. V. Paretti, and C. A. Jones, 2007: Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics. J. Hydrol., 344, 1731, https://doi.org/10.1016/j.jhydrol.2007.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., J. Mai, L. Samaniego, M. Clark, V. Wulfmeyer, O. Branch, S. Attinger, and S. Thober, 2016: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos., 121, 10 67610 700, https://doi.org/10.1002/2016JD025097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Department of Energy, 2018: AmeriFlux Data Use Policy. http://ameriflux.lbl.gov/data/data-policy/.

  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q., S. Sorooshian, and V. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 10151031, https://doi.org/10.1029/91WR02985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dugger, A. L., and Coauthors, 2017: Learning from the National Water Model: Regional improvements in streamflow prediction through experimental parameter and physics updates to the WRF-Hydro Community Model. 31st Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., 6A.3, https://ams.confex.com/ams/97Annual/webprogram/Paper314352.html.

  • Finch, Z. O., and R. H. Johnson, 2010: Observational analysis of an upper-level inverted trough during the 2004 North American Monsoon Experiment. Mon. Wea. Rev., 138, 35403555, https://doi.org/10.1175/2010MWR3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. Yu, and D. N. Yates, 2015: The WRF-Hydro model technical description and user's guide, version 1.0. NCAR Tech. Doc., 120 pp., https://www.ral.ucar.edu/projects/wrf_hydro.

  • Goodrich, D. C., L. J. Lane, R. A. Shillito, S. N. Miller, K. H. Syed, and D. A. Woolhiser, 1997: Linearity of basin response as a function of scale in a semi-arid watershed. Water Resour. Res., 33, 29512965, https://doi.org/10.1029/97WR01422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, D. C., D. G. Williams, C. L. Unkrich, R. L. Scott, K. R. Hultine, D. Pool, A. Coes, and J. Hogan, 2003: Multiple approaches to estimate ephemeral channel recharge. Proc. First Interagency Conf. on Research in the Watersheds, Tucson, AZ, U.S. Department of Agriculture, 118–124, http://www.tucson.ars.ag.gov/icrw/Proceedings/Goodrich.pdf.

  • Goodrich, D. C., and Coauthors, 2004: Comparison of methods to estimate ephemeral channel recharge, Walnut Gulch, San Pedro River Basin, Arizona. Groundwater Recharge in a Desert Environment: The Southwestern United States, J. F. Hogan, F. M. Phillips and B. R. Scanlon, Eds., Water Science and Application Series, Vol. 9, Amer. Geophys. Union, 77–99.

    • Crossref
    • Export Citation
  • Goodrich, D. C., and Coauthors, 2012: KINEROS2/AGWA: Model use, calibration, and evaluation. Trans. ASABE, 55, 15611574, https://doi.org/10.13031/2013.42264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Coauthors, 2017: The FLASH Project: Improving the tools for flash flood monitoring and prediction across the United States. Bull. Amer. Meteor. Soc., 98, 361372, https://doi.org/10.1175/BAMS-D-15-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., T. Wagener, and Y. Liu, 2008: Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol. Processes, 22, 38023813, https://doi.org/10.1002/hyp.6989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. Yilmaz, and G. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, J., J. J. Gourley, P.-E. Kirstetter, Y. Hong, F. Kong, and Z. L. Flamig, 2016: A method for probabilistic flash flood forecasting. J. Hydrol., 541, 480494, https://doi.org/10.1016/j.jhydrol.2016.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Julien, P. Y., B. Saghafian, and F. L. Ogden, 1995: Raster-based hydrological modeling of spatially-varied surface runoff. J. Amer. Water Resour. Assoc., 31, 523536, https://doi.org/10.1111/j.1752-1688.1995.tb04039.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, D. K. Adams, Y. L. Serra, J. J. Brost, and T. Luong, 2016: Long-term changes in the climatology of transient inverted troughs over the North American monsoon region and their effects on precipitation. J. Climate, 29, 60376064, https://doi.org/10.1175/JCLI-D-15-0726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, L. J., 1983: Transmission losses. SCS National Engineering Handbook, U.S. Government Printing Office, 19-1–19-21.

  • Lespinas, F., A. Dastoor, and V. Fortin, 2017: Performance of the dynamically dimensioned search algorithm: influence of parameter initialization strategy when calibrating a physically based hydrological model. Hydrol. Res., 49 (4), 971988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, http://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Looper, J. P., and B. E. Vieux, 2012: An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model. J. Hydrol., 412–413, 114132, https://doi.org/10.1016/j.jhydrol.2011.05.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luong, T. M., C. L. Castro, H. Chang, T. Lahmers, D. K. Adams, and C. A. Ochoa-Moya, 2017: The more extreme nature of North American monsoon precipitation in the southwestern United States as revealed by a historical climatology of simulated severe weather events. J. Appl. Meteor. Climatol., 56, 25092529, https://doi.org/10.1175/JAMC-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. M. McCollum, and K. W. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778, https://doi.org/10.1175/1520-0434(1995)010<0763:LSPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., L. E. Condon, and S. J. Kollet, 2015: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev., 8, 923937, https://doi.org/10.5194/gmd-8-923-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, D. M., R. A. Maddox, and K. W. Howard, 1995: Case study of a severe mesoscale convective system in central Arizona. Wea. Forecasting, 10, 643665, https://doi.org/10.1175/1520-0434(1995)010<0643:CSOASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, L., T. Bondelid, T. Dewald, J. Johnston, R. Moore, and A. Rea, 2012: NHDPlus version 2: User guide. U.S. EPA Doc., 179 pp., ftp://ftp.horizon-systems.com/nhdplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf.

  • Mendoza, P. A., M. P. Clark, M. Barlage, B. Rajagopalan, L. Samaniego, G. Abramowitz, and H. Gupta, 2015: Are we unnecessarily constraining the agility of complex process-based models? Water Resour. Res., 51, 716728, https://doi.org/10.1002/2014WR015820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moran, M. S., and Coauthors, 2008: Preface to special section on Fifty Years of Research and Data Collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed. Water Resour. Res., 44, W05S01, https://doi.org/10.1029/2007WR006083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., W. F. Krajewski, D. C. Goodrich, X. Gao, and S. Sorooshian, 2003: Estimating rainfall intensities from weather radar data: The scale-dependency problem. J. Hydrometeor., 4, 782797, https://doi.org/10.1175/1525-7541(2003)004<0782:ERIFWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., R. A. Maddox, D. C. Goodrich, and S. Sorooshian, 2005: Radar ZR relationship for summer monsoon storms in Arizona. Wea. Forecasting, 20, 672679, https://doi.org/10.1175/WAF878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2014: United States Flood Loss Report - Water Year 2014. https://www.nws.noaa.gov/os/water/Flood%20Loss%20Reports/WY14%20Flood%20Loss%20Summary.pdf.

  • Newman, A., and R. H. Johnson, 2012: Mechanisms for precipitation enhancement in a North American monsoon upper-tropospheric trough. J. Atmos. Sci., 69, 17751792, https://doi.org/10.1175/JAS-D-11-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noorduijn, S. L., M. Shanafield, M. A. Trigg, G. A. Harrington, P. G. Cook, and L. Peeters, 2014: Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data. Water Resour. Res., 50, 14741489, https://doi.org/10.1002/2012WR013424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogden, F. L., 1997: CASC2D Reference Manual. Dept. of Civil and Environmental Engineering U-37, University of Connecticut, 106 pp.

  • Parlange, J.-Y., I. Lisle, R. D. Braddock, and R. E. Smith, 1982: The three-parameter infiltration equation. Soil Sci., 133, 337341, https://doi.org/10.1097/00010694-198206000-00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokhrel, P., K. K. Yilmaz, and H. V. Gupta, 2012: Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures. J. Hydrol., 418–419, 4960, https://doi.org/10.1016/j.jhydrol.2008.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytlak, E., M. Goering, and A. Bennett, 2005: Upper-tropospheric troughs and their interaction with the North American monsoon. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., JP2.3, https://ams.confex.com/ams/pdfpapers/85393.pdf.

  • Rawls, W. J., D. L. Brakensiek, and K. E. Saxton, 1982: Estimation of soil water properties. Trans. ASABE, 25, 13161320, https://doi.org/10.13031/2013.33720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., J. Schaake, and Z. Zhang, 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, https://doi.org/10.1016/j.jhydrol.2007.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., R. Kumar, and S. Attinger, 2010: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seastrand, S., Y. Serra, C. L. Castro, and E. Ritchie, 2015: The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol., 35, 20192032, https://doi.org/10.1002/joc.4104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R. E., and J.-Y. Parlange, 1978: A parameter-efficient hydrologic infiltration model. Water Resour. Res., 14, 533538, https://doi.org/10.1029/WR014i003p00533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. E., and D. C. Goodrich, 2000: Model for rainfall excess patterns on randomly heterogeneous areas. J. Hydrol. Eng., 5, 355362, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(355).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M., and H. V. Gupta, 2012: The Distributed Model Intercomparison Project (DMIP) – Phase 2 experiments in the Oklahoma region, USA. J. Hydrol., 418-419, 12, https://doi.org/10.1016/j.jhydrol.2011.09.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. E., K. R. J. Smettem, P. Broadbridge, and D. A. Woolhiser, 2002: Infiltration Theory for Hydrologic Applications. Water Resources Monogr., Vol. 15, Amer. Geophys. Union, 213 pp.

    • Crossref
    • Export Citation
  • Stone, J. J., M H. Nichols, D. C. Goodrich, and J. Buono, 2008: Long-term runoff database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resour. Res., 44, W05S05, https://doi.org/10.1029/2006WR005733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolson, B. A., and C. A. Shoemaker, 2007: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res., 43, W01413, https://doi.org/10.1029/2005WR004723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergara, H., P.-E. Kirstetter, J. Gourley, Z. Flamig, Y. Hong, A. Arthur, and R. Kolar, 2016: Estimating a-priori kinematic wave model parameters based on regionalization for flash flood forecasting in the conterminous United States. J. Hydrol., 541A, 421433, https://doi.org/10.1016/j.jhydrol.2016.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Woolhiser, D. A., R. E. Smith, and D. C. Goodrich, 1990: A kinematic runoff and erosion manual: Documentation and user manual. USDA Rep. ARS 77, 141 pp., https://www.tucson.ars.ag.gov/unit/publications/PDFfiles/703.pdf.

  • Yatheendradas, S., T. Wagener, H. Gupta, C. Unkrich, D. Goodrich, M. Schaffner, and A. Stewart, 2008: Understanding uncertainty in distributed flash flood forecasting for semiarid regions. Water Resour. Res., 44, W05S19, https://doi.org/10.1029/2007WR005940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamora, R. J., F. M. Ralph, E. Clark, and T. Schneider, 2011: The NOAA Hydrometeorology Testbed soil moisture observing networks: Design instrumentation, and preliminary results. J. Atmos. Oceanic Technol., 28, 11291140, https://doi.org/10.1175/2010JTECHA1465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamora, R. J., E. P. Clark, E. Rogers, M. B. Ek, and T. M. Lahmers, 2014: An examination of meteorological and soil moisture conditions in the Babocomari River basin before the flood event of 2008. J. Hydrometeor., 15, 243260, https://doi.org/10.1175/JHM-D-12-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., E. Serpetzoglou, E.N. Anagnostou, E.I. Nikolopoulos, and A. Papadopoulos, 2012: Improving the representation of river–groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model. J. Hydrol., 420–421, 7286, https://doi.org/10.1016/j.jhydrol.2011.11.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2811 805 36
PDF Downloads 2540 595 33