Comparing GEFS, ECMWF, and Postprocessing Methods for Ensemble Precipitation Forecasts over Brazil

Hanoi Medina Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama

Search for other papers by Hanoi Medina in
Current site
Google Scholar
PubMed
Close
,
Di Tian Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama

Search for other papers by Di Tian in
Current site
Google Scholar
PubMed
Close
,
Fabio R. Marin Department of Biosystems Engineering, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, São Paolo, Brazil

Search for other papers by Fabio R. Marin in
Current site
Google Scholar
PubMed
Close
, and
Giovanni B. Chirico Department of Agricultural Sciences, Water Resources Management and Biosystems Engineering Division, University of Naples Federico II, Portici, Naples, Italy

Search for other papers by Giovanni B. Chirico in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study compares the performance of Global Ensemble Forecast System (GEFS) and European Centre for Medium-Range Weather Forecasts (ECMWF) precipitation ensemble forecasts in Brazil and evaluates different analog-based methods and a logistic regression method for postprocessing the GEFS forecasts. The numerical weather prediction (NWP) forecasts were evaluated against the Physical Science Division South America Daily Gridded Precipitation dataset using both deterministic and probabilistic forecasting evaluation metrics. The results show that the ensemble precipitation forecasts performed commonly well in the east and poorly in the northwest of Brazil, independent of the models and the postprocessing methods. While the raw ECMWF forecasts performed better than the raw GEFS forecasts, analog-based GEFS forecasts were more skillful and reliable than both raw ECMWF and GEFS forecasts. The choice of a specific postprocessing strategy had less impact on the performance than the postprocessing itself. Nonetheless, forecasts produced with different analog-based postprocessing strategies were significantly different and were more skillful and as reliable and sharp as forecasts produced with the logistic regression method. The approach considering the logarithm of current and past reforecasts as the measure of closeness between analogs was identified as the best strategy. The results also indicate that the postprocessing using analog methods with long-term reforecast archive improved raw GEFS precipitation forecasting skill more than using logistic regression with short-term reforecast archive. In particular, the postprocessing dramatically improves the GEFS precipitation forecasts when the forecasting skill is low or below zero.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Di Tian, tiandi@auburn.edu

Abstract

This study compares the performance of Global Ensemble Forecast System (GEFS) and European Centre for Medium-Range Weather Forecasts (ECMWF) precipitation ensemble forecasts in Brazil and evaluates different analog-based methods and a logistic regression method for postprocessing the GEFS forecasts. The numerical weather prediction (NWP) forecasts were evaluated against the Physical Science Division South America Daily Gridded Precipitation dataset using both deterministic and probabilistic forecasting evaluation metrics. The results show that the ensemble precipitation forecasts performed commonly well in the east and poorly in the northwest of Brazil, independent of the models and the postprocessing methods. While the raw ECMWF forecasts performed better than the raw GEFS forecasts, analog-based GEFS forecasts were more skillful and reliable than both raw ECMWF and GEFS forecasts. The choice of a specific postprocessing strategy had less impact on the performance than the postprocessing itself. Nonetheless, forecasts produced with different analog-based postprocessing strategies were significantly different and were more skillful and as reliable and sharp as forecasts produced with the logistic regression method. The approach considering the logarithm of current and past reforecasts as the measure of closeness between analogs was identified as the best strategy. The results also indicate that the postprocessing using analog methods with long-term reforecast archive improved raw GEFS precipitation forecasting skill more than using logistic regression with short-term reforecast archive. In particular, the postprocessing dramatically improves the GEFS precipitation forecasts when the forecasting skill is low or below zero.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Di Tian, tiandi@auburn.edu
Save
  • Atger, F., 2001: Verification of intense precipitation forecasts from single models and ensemble prediction systems. Nonlinear Processes Geophys., 8, 401417, https://doi.org/10.5194/npg-8-401-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., and Coauthors, 2012: Progress in predicting tropical systems: The role of convection. ECMWF Tech. Memo. 686, 63 pp., https://www.ecmwf.int/sites/default/files/elibrary/2012/8019-progress-predicting-tropical-systems-role-convection.pdf.

  • Bechtold, P., N. Semane, P. Lopez, J. P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben Daoud, A., E. Sauquet, G. Bontron, C. Obled, and M. Lang, 2016: Daily quantitative precipitation forecasts based on the analogue method: Improvements and application to a French large river basin. Atmos. Res., 169, 147159, https://doi.org/10.1016/j.atmosres.2015.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and E. A. Collini, 2000: Springtime precipitation and water vapor flux over southeastern South America. Mon. Wea. Rev., 128, 13281346, https://doi.org/10.1175/1520-0493(2000)128<1328:SPAWVF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002a: Evaluation of the diurnal cycle of precipitation, surface thermo-dynamics and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107, 8045, https://doi.org/10.1029/2001JD000427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002b: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107, 4732, https://doi.org/10.1029/2002JD002264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261268, https://doi.org/10.1038/ngeo2398.

  • Caillouet, L., J. P. Vidal, E. Sauquet, and B. Graff, 2016: Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France. Climate Past, 12, 635662, https://doi.org/10.5194/cp-12-635-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M., C. Jones, A. N. Posadas, R. Quiroz, B. Bookhagen, and B. Liebmann, 2012: Precipitation characteristics of the South American monsoon system derived from multiple datasets. J. Climate, 25, 46004620, https://doi.org/10.1175/JCLI-D-11-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, G., and R. L. Berger, 2002: Statistical Inference. 2nd ed. Duxbury, 660 pp.

  • Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood forecasting: A review. J. Hydrol., 375, 613626, https://doi.org/10.1016/j.jhydrol.2009.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to post-process numerical weather predictions. Mon. Wea. Rev., 139, 35543570, https://doi.org/10.1175/2011MWR3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, https://doi.org/10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and L. Delle Monache, 2016: A hybrid NWP–analog ensemble. Mon. Wea. Rev., 144, 897911, https://doi.org/10.1175/MWR-D-15-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espinoza Villar, J. C., and Coauthors, 2009: Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol., 29, 15741594, https://doi.org/10.1002/joc.1791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 2015: FAOSTAT database. Food and Agriculture Organization of the United Nations, Statistics Division, http://faostat3.fao.org/home/E.

  • Ferreira, J., R. Pardini, J. P. Metzger, C. R. Fonseca, P. S. Pompeu, G. Sparovek, and J. Louzada, 2012: Towards environmentally sustainable agriculture in Brazil: Challenges and opportunities for applied ecological research. J. Appl. Ecol., 49, 535541, https://doi.org/10.1111/j.1365-2664.2012.02145.x.

    • Search Google Scholar
    • Export Citation
  • Foresti, L., L. Panziera, P. V. Mandapaka, U. Germann, and A. Seed, 2015: Retrieval of analogue radar images for ensemble nowcasting of orographic rainfall. Meteor. Appl., 22, 141155, https://doi.org/10.1002/met.1416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., and Coauthors, 2013: Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl. Acad. Sci. USA, 110, 18 11018 115, https://doi.org/10.1073/pnas.1302584110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., T. L. Chambers, W. S. Richardson, and H. P. Perrotti, 1985: Objective map analysis for the local AFOS MOS Program. NOAA Tech. Memo. NWS TDL 75, 42 pp., https://www.nws.noaa.gov/mdl/pubs/Documents/TechMemo/TechMemo75.pdf.

  • Gneiting, T., 2014: Calibration of medium-range weather forecasts. ECMWF Tech. Memo. 719, 30 pp., https://www.ecmwf.int/sites/default/files/elibrary/2014/9607-calibration-medium-range-weather-forecasts.pdf.

  • Grimm, A. M., and M. T. Zilli, 2009: Interannual variability and seasonal evolution of summer monsoon rainfall in South America. J. Climate, 22, 22572275, https://doi.org/10.1175/2008JCLI2345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerrant, R. L., and Coauthors, 1983: Prospective study of diarrheal illnesses in northeastern Brazil: Patterns of disease, nutritional impact, etiologies, and risk factors. J. Infect. Dis., 148, 986997, https://doi.org/10.1093/infdis/148.6.986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: Two-meter temperatures. Mon. Wea. Rev., 136, 26082619, https://doi.org/10.1175/2007MWR2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., R. Buizza, T. M. Hamill, M. Leutbecher, and T. N. Palmer, 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 18141827, https://doi.org/10.1002/qj.1895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2012: Verification of TIGGE multimodel and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the contiguous United States. Mon. Wea. Rev., 140, 22322252, https://doi.org/10.1175/MWR-D-11-00220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346, https://doi.org/10.1175/BAMS-87-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, https://doi.org/10.1175/2007MWR2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Wea. Rev., 143, 33003309, https://doi.org/10.1175/MWR-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, S. K., 2002: Hydrological controls of ecological structure and function in the Pantanal wetland (Brazil). The Ecohydrology of South American Rivers and Wetlands, M. E. McClain, Ed., IAHS Special Publ. 6, International Association of Hydrological Sciences, 133–158.

  • He, Y., and Coauthors, 2010: Ensemble forecasting using TIGGE for the July–September 2008 floods in the Upper Huai catchment: A case study. Atmos. Sci. Lett., 11, 132138, https://doi.org/10.1002/asl.270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, P. and S. Brönnimann, 2019: Impact of global atmospheric reanalyses on statistical precipitation downscaling. Climate Dyn., https://doi.org/10.1007/s00382-018-4442-6, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, P., M. Jaboyedoff, and C. Obled, 2018: Using genetic algorithms to optimize the analogue method for precipitation prediction in the Swiss Alps. J. Hydrol., 556, 12201231, https://doi.org/10.1016/j.jhydrol.2017.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IBGE, 2004: Mapa de Biomas do Brasil: Primeira aproximação. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro.

  • Jones, C., and J. K. E. Schemm, 2000: The influence of intraseasonal variations on medium-to extended-range weather forecasts over South America. Mon. Wea. Rev., 128, 486494, https://doi.org/10.1175/1520-0493(2000)128<0486:TIOIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. Bauer, W. Wang, P. A. Arkin, and J. Gottschalck, J., 2010: An evaluation of precipitation forecasts from operational models and reanalyses including precipitation variations associated with MJO activity. Mon. Wea. Rev., 138, 45424560, https://doi.org/10.1175/2010MWR3436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leal, I. R., J. M. C. da Silva, M. Tabarelli, and T. E. Lacher, 2005: Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv. Biol., 19, 701706, https://doi.org/10.1111/j.1523-1739.2005.00703.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and D. Allured, 2005: Daily precipitation grids for South America. Bull. Amer. Meteor. Soc., 86, 15671570, https://doi.org/10.1175/BAMS-86-11-1567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and D. Allured, 2006: Reply. Bull. Amer. Meteor. Soc., 87, 1096–1096, https://doi.org/10.1175/BAMS-87-8-1096.

  • Marengo, J. A., B. Liebmann, V. E. Kousky, N. P. Filizola, and I. C. Wainer, 2001: Onset and end of the rainy season in the Brazilian Amazon Basin. J. Climate, 14, 833852, https://doi.org/10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, H., D. Tian, P. Srivastava, A. Pelosi, and G. B. Chirico, 2018: Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions. J. Hydrol., 562, 502517, https://doi.org/10.1016/j.jhydrol.2018.05.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MMA, 2011: Quarto relatório nacional para a convenção sobre diversidade biológica. Ministério do Meio Ambiente, 248 pp.

  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, https://doi.org/10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci., 38, 26532675, https://doi.org/10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: Hedging and skill scores for probability forecasts. J. Appl. Meteor., 12, 215223, https://doi.org/10.1175/1520-0450(1973)012<0215:HASSFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelosi, A., H. Medina, J. Van den Bergh, S. Vannitsem, and G. B. Chirico, 2017: Adaptive Kalman filtering for post-processing ensemble numerical weather predictions. Mon. Wea. Rev., 145, 48374854, https://doi.org/10.1175/MWR-D-17-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., and V. Da Silva Marques, 1984: Water vapor characteristics over Northeast Brazil during two contrasting years. J. Climate Appl. Meteor., 23, 440444, https://doi.org/10.1175/1520-0450(1984)023<0440:WVCONB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., and K. Hada, 1990: Characteristics of rainfall over Brazil: Annual variations and connections with the Southern Oscillation. Theor. Appl. Climatol., 42, 8191, https://doi.org/10.1007/BF00868215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., I. F. Cavalcanti, and K. Hada, 1996: Annual variation of rainfall over Brazil and water vapor characteristics over South America. J. Geophys. Res., 101, 26 53926 551, https://doi.org/10.1029/96JD01936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratter, J. A., J. F. Ribeiro, and S. Bridgewater, 1997: The Brazilian cerrado vegetation and threats to its biodiversity. Ann. Bot., 80, 223230, https://doi.org/10.1006/anbo.1997.0469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roesch, L. F. W., F. C. B. Vieira, V. A. Pereira, A. L. Schünemann, I. F. Teixeira, A. J. T. Senna, and V. M. Stefenon, 2009: The Brazilian Pampa: A fragile biome. Diversity, 1, 182198, https://doi.org/10.3390/d1020182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, J., C. Saulo, and E. Kalnay, 2009: Comparison of methods used to generate probabilistic quantitative precipitation forecasts over South America. Wea. Forecasting, 24, 319336, https://doi.org/10.1175/2008WAF2007098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, https://doi.org/10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, V. B., V. E. Kousky, W. Shi, and R. W. Higgins, 2007: An improved gridded historical daily precipitation analysis for Brazil. J. Hydrometeor., 8, 847861, https://doi.org/10.1175/JHM598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, X., H. Yuan, Y. Zhu, Y. Luo, and Y. Wang, 2014: Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008–2012. J. Geophys. Res. Atmos., 119, 72927310, https://doi.org/10.1002/2014JD021733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subramanian, A., A. Weisheimer, T. Palmer, F. Vitart, and P. Bechtold, 2017: Impact of stochastic physics on tropical precipitation in the coupled ECMWF model. Quart. J. Roy. Meteor. Soc., 143, 852865, https://doi.org/10.1002/qj.2970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. S. and P. Satyamurty, 2007: Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil. Mon. Wea. Rev., 135, 598617, https://doi.org/10.1175/MWR3302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, D., and C. J. Martinez, 2012: Comparison of two analog-based downscaling methods for regional reference evapotranspiration forecasts. J. Hydrol., 475, 350364, https://doi.org/10.1016/j.jhydrol.2012.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, D., and C. J. Martinez, 2014: The GEFS-based daily reference evapotranspiration (ETo) forecast and its implication for water management in the southeastern United States. J. Hydrometeor., 15, 11521165, https://doi.org/10.1175/JHM-D-13-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., O. Talagrand, G., Candille, and Y. Zhu, 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., Wiley, 137–163.

  • Voisin, N., J. C. Schaake, and D. P. Lettenmaier, 2010: Calibration and downscaling methods for quantitative ensemble precipitation forecasts. Wea. Forecasting, 25, 16031627, https://doi.org/10.1175/2010WAF2222367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Comparison of ensemble-MOS methods in the Lorenz’96 setting. Meteor. Appl., 13, 24325, https://doi.org/10.1017/S1350482706002192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, https://doi.org/10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xavier, A. C., C. V. King, and B. R. Scanlon, 2016: Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol., 36, 26442659, https://doi.org/10.1002/joc.4518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., M. Hejazi, S. Smith, J. Edmonds, H. Li, L. Clarke, K. Calvin, and A. Thomson, 2015: A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci., 8, 26222633, https://doi.org/10.1039/C5EE00888C.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5890 4119 126
PDF Downloads 1823 480 23