Bias Correction of Zero-Inflated RCM Precipitation Fields: A Copula-Based Scheme for Both Mean and Extreme Conditions

Rajib Maity Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India, and Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Campus Alpin, Garmisch-Partenkirchen, Germany

Search for other papers by Rajib Maity in
Current site
Google Scholar
PubMed
Close
,
Mayank Suman School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, India

Search for other papers by Mayank Suman in
Current site
Google Scholar
PubMed
Close
,
Patrick Laux Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Campus Alpin, Garmisch-Partenkirchen, and Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Patrick Laux in
Current site
Google Scholar
PubMed
Close
, and
Harald Kunstmann Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Campus Alpin, Garmisch-Partenkirchen, and Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in extreme precipitation due to climate change often require the application of methods to bias correct simulated atmospheric fields, including extremes. Most existing bias correction techniques (i) only focus on the bias in the mean value or on the extreme values separately, and (ii) exclude zero values from analysis, even though their presence is significant in daily precipitation. We developed a copula-based bias correction scheme that is suitable for zero-inflated daily precipitation data to correct the bias in mean as well as in extreme precipitation at any specific statistical quantile. In considering the whole of Germany as a test bed, the proposed scheme is found to work well across the entire study area, including the German Alpine regions. The joint distribution between observed and regional climate model (RCM)-derived precipitation is developed through copulas. In particular, the joint distribution is modified to make it discrete at zero in order to account for zero values. The benefit of considering zero precipitation values is revealed through the improved performance of bias correction both in the mean and extreme values. Second, the quantile that best captures the bias (whether in the mean or any extreme value) is determined for a specific location and varies spatially and seasonally. This relaxation in selecting the location-specific optimal quantile renders the proposed methodology spatially transferable. By acknowledging possible changes in extreme precipitation due to climate change, the proposed scheme is expected to be suitable for climate change impact assessments for extreme events worldwide.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0126.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rajib Maity, rajib@civil.iitkgp.ac.in

Abstract

Changes in extreme precipitation due to climate change often require the application of methods to bias correct simulated atmospheric fields, including extremes. Most existing bias correction techniques (i) only focus on the bias in the mean value or on the extreme values separately, and (ii) exclude zero values from analysis, even though their presence is significant in daily precipitation. We developed a copula-based bias correction scheme that is suitable for zero-inflated daily precipitation data to correct the bias in mean as well as in extreme precipitation at any specific statistical quantile. In considering the whole of Germany as a test bed, the proposed scheme is found to work well across the entire study area, including the German Alpine regions. The joint distribution between observed and regional climate model (RCM)-derived precipitation is developed through copulas. In particular, the joint distribution is modified to make it discrete at zero in order to account for zero values. The benefit of considering zero precipitation values is revealed through the improved performance of bias correction both in the mean and extreme values. Second, the quantile that best captures the bias (whether in the mean or any extreme value) is determined for a specific location and varies spatially and seasonally. This relaxation in selecting the location-specific optimal quantile renders the proposed methodology spatially transferable. By acknowledging possible changes in extreme precipitation due to climate change, the proposed scheme is expected to be suitable for climate change impact assessments for extreme events worldwide.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0126.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rajib Maity, rajib@civil.iitkgp.ac.in

Supplementary Materials

    • Supplemental Materials (PDF 1.17 MB)
Save
  • Abatzoglou, J. T., and T. J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, https://doi.org/10.1002/joc.2312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben Alaya, M. A., F. Chebana, and T. B. M. J. Ouarda, 2014: Probabilistic Gaussian copula regression model for multisite and multivariable downscaling. J. Climate, 27, 33313347, https://doi.org/10.1175/JCLI-D-13-00333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., S. Wagner, H. Kunstmann, and G. Schädler, 2013: High resolution regional climate model simulations for Germany: Part I—validation. Climate Dyn., 40, 401414, https://doi.org/10.1007/s00382-012-1508-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Block, P. J., F. A. Souza Filho, L. Sun, and H.-H. Kwon, 2009: A streamflow forecasting framework using multiple climate and hydrological models. J. Amer. Water Resour. Assoc., 45, 828843, https://doi.org/10.1111/j.1752-1688.2009.00327.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borgomeo, E., G. Pflug, J. W. Hall, and S. Hochrainer-Stigler, 2015: Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit. Water Resour. Res., 51, 89278948, https://doi.org/10.1002/2015WR017324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, J. J., L. de Haan, and C. Zhou, 2013: Bias correction in extreme value statistics with index around zero. Extremes, 16, 173201, https://doi.org/10.1007/s10687-012-0158-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang, Q. T., P. Laux, and H. Kunstmann, 2017: Future high and low flow estimations for central Vietnam: A hydrometeorological modelling chain approach. Hydrol. Sci. J., 62, 18671889, https://doi.org/10.1080/02626667.2017.1353696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S. K., and R. Maity, 2015: A hydrometeorological approach for probabilistic simulation of monthly soil moisture under bare and crop land conditions. Water Resour. Res., 51, 23362355, https://doi.org/10.1002/2014WR016043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Elía, R., R. Laprise, S. Biner, and J. Merleau, 2017: Synchrony between reanalysis-driven RCM simulations and observations: Variation with time scale. Climate Dyn., 48, 25972610, https://doi.org/10.1007/s00382-016-3226-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., and P. Paruolo, 2011: Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. J. Geophys. Res., 116, D16106, https://doi.org/10.1029/2011JD015934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DWD, 2011: Abteilung Hydrometeorologie: REGNIE (REGionalisierte NIEderschlage): Verfahrensbeschreibung und Nutzeranleitung. Interner Bericht im DWD, 9 pp., https://www.dwd.de/DE/leistungen/regnie/download/regnie_beschreibung_pdf.pdf.

  • Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert, 2012: Should we apply bias correction to global and regional climate model data? Hydrol. Earth Syst. Sci., 16, 33913404, https://doi.org/10.5194/hess-16-3391-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., M. Ekström, S. Blenkinsop, and A. P. Smith, 2007: Estimating change in extreme European precipitation using a multimodel ensemble. J. Geophys. Res., 112, D18104, https://doi.org/10.1029/2007JD008619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genest, C., B. Rémillard, and D. Beaudoin, 2009: Goodness-of-fit tests for copulas: A review and a power study. Insur. Math. Econ., 44, 199213, https://doi.org/10.1016/j.insmatheco.2007.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimaldi, S., A. Petroselli, G. Salvadori, and C. De Michele, 2016: Catchment compatibility via copulas: A non-parametric study of the dependence structures of hydrological responses. Adv. Water Resour., 90, 116133, https://doi.org/10.1016/j.advwatres.2016.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagemann, S., C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani, 2011: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeor., 12, 556578, https://doi.org/10.1175/2011JHM1336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, 2013: A trend-preserving bias correction–The ISI-MIP approach. Earth Syst. Dyn., 4, 219236, https://doi.org/10.5194/esd-4-219-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobaek Haff, I., A. Frigessi, and D. Maraun, 2015: How well do regional climate models simulate the spatial dependence of precipitation? An application of pair-copula constructions. J. Geophys. Res. Atmos., 120, 26242646, https://doi.org/10.1002/2014JD022748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, S., and M. L. Kavvas, 2013: Downscaling global climate simulations to regional scales: statistical downscaling versus dynamical downscaling. J. Hydrol. Eng., 20, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000939.

    • Search Google Scholar
    • Export Citation
  • Jeon, S., C. J. Paciorek, and M. F. Wehner, 2016: Quantile-based bias correction and uncertainty quantification of extreme event attribution statements. Wea. Climate Extremes, 12, 2432, https://doi.org/10.1016/j.wace.2016.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, H., 1996: Families of m-variate distributions with given margins and m(m − 1)/2 bivariate dependence parameters. Lect. Notes Monogr. Ser., 28, 120141, https://doi.org/10.1214/lnms/1215452614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, F., and A. Sharma, 2011: Accounting for interannual variability: A comparison of options for water resources climate change impact assessments. Water Resour. Res., 47, W04508, https://doi.org/10.1029/2010WR009272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunstmann, H., K. Schneider, R. Forkel, and R. Knoche, 2004: Impact analysis of climate change for an Alpine catchment using high resolution dynamic downscaling of ECHAM4 time slices. Hydrol. Earth Syst. Sci., 8, 10311045, https://doi.org/10.5194/hess-8-1031-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, T., S. Dadson, G. Buys, and C. Prudhomme, 2013: Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol., 33, 13671381, https://doi.org/10.1002/joc.3518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laux, P., S. Wagner, A. Wagner, J. Jacobeit, and H. Kunstmann, 2009: Modelling daily precipitation features in the Volta Basin of West Africa. Int. J. Climatol., 29, 937954, https://doi.org/10.1002/joc.1852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laux, P., S. Vogl, W. Qiu, H.-R. Knoche, and H. Kunstmann, 2011: Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Hydrol. Earth Syst. Sci., 15, 24012419, https://doi.org/10.5194/hess-15-2401-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leander, R., and T. A. Buishand, 2007: Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol., 332, 487496, https://doi.org/10.1016/j.jhydrol.2006.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leander, R., T. A. Buishand, B. J. J. M. van den Hurk, and M. J. M. de Wit, 2008: Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. J. Hydrol., 351, 331343, https://doi.org/10.1016/j.jhydrol.2007.12.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., A. Buishand, and W. van Deursen, 2007: Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci., 11, 11451159, https://doi.org/10.5194/hess-11-1145-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, https://doi.org/10.1029/2009JD012882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, M., J. Bliefernicht, B. Haese, and H. Kunstmann, 2018: Copula-based downscaling of daily precipitation fields. Hydrol. Processes, 32, 34793494, https://doi.org/10.1002/hyp.13271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madadgar, S., and H. Moradkhani, 2013: Drought analysis under climate change using copula. J. Hydrol. Eng., 18, 746759, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maity, R., 2018: Statistical Methods in Hydrology and Hydroclimatology. Springer, 444 pp., https://doi.org/10.1007/978-981-10-8779-0.

    • Crossref
    • Export Citation
  • Maity, R., and D. Nagesh Kumar, 2008: Probabilistic prediction of hydroclimatic variables with nonparametric quantification of uncertainty. J. Geophys. Res., 113, D14105, https://doi.org/10.1029/2008JD009856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maity, R., M. Suman, and N. K. Verma, 2016: Drought prediction using a wavelet based approach to model the temporal consequences of different types of droughts. J. Hydrol., 539, 417428, https://doi.org/10.1016/j.jhydrol.2016.05.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, G., S. Vogl, P. Laux, S. Wagner, and H. Kunstmann, 2015: Stochastic bias correction of dynamically downscaled precipitation fields for Germany through copula-based integration of gridded observation data. Hydrol. Earth Syst. Sci., 19, 17871806, https://doi.org/10.5194/hess-19-1787-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2017: Towards process-informed bias correction of climate change simulations. Nat. Climate Change, 7, 764773 https://doi.org/10.1038/nclimate3418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P. A., M. Vrac, and H. Loukos, 2009: Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelsen, R. B., 2006: An Introduction to Copulas. 2nd ed. Springer, 218 pp., https://doi.org/10.1007/978-1-4757-3076-0.

    • Crossref
    • Export Citation
  • Nikulin, G., E. Kjellström, U. L. F. Hansson, G. Strandberg, and A. Ullerstig, 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus, 63A, 4155, https://doi.org/10.1111/j.1600-0870.2010.00466.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ott, I., and Coauthors, 2013: High-resolution climate change impact analysis on medium-sized river catchments in Germany: An ensemble assessment. J. Hydrometeor., 14, 11751193, https://doi.org/10.1175/JHM-D-12-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, M., R. Maity, M. Suman, S. K. Das, P. Patel, and H. S. Srivastava, 2017: Satellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data. IEEE Trans. Geosci. Remote Sens., 55, 13511362, https://doi.org/10.1109/TGRS.2016.2623378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., J. O. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, https://doi.org/10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, https://doi.org/10.1175/JHM-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeor., 16, 24212442, https://doi.org/10.1175/JHM-D-14-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojas, R., L. Feyen, A. Dosio, and D. Bavera, 2011: Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrol. Earth Syst. Sci., 15, 25992620, https://doi.org/10.5194/hess-15-2599-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., A. Bárdossy, and R. Kumar, 2010: Streamflow prediction in ungauged catchments using copula-based dissimilarity measures. Water Resour. Res., 46, W02506, https://doi.org/10.1029/2008WR007695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidli, J., C. Frei, and P. L. Vidale, 2006: Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol., 26, 679689, https://doi.org/10.1002/joc.1287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., 2007: Coping with copulas. Copulas: From Theory to Application in Finance, J. Rank, Ed., Risk Books, 3–34.

  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6, 461464, https://doi.org/10.1214/aos/1176344136.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sraj, M., N. Bezak, and M. Brilly, 2015: Bivariate flood frequency analysis using the copula function: A case study of the Litija station on the Sava River. Hydrol. Processes, 29, 225238, https://doi.org/10.1002/hyp.10145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2010: Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geogr. Compass, 4, 834860, https://doi.org/10.1111/j.1749-8198.2010.00357.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thrasher, B., E. P. Maurer, C. McKellar, and P. B. Duffy, 2012: Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci., 16, 33093314, https://doi.org/10.5194/hess-16-3309-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • van den Berg, M., S. Vandenberghe, B. De Baets, and N. Verhoest, 2011: Copula-based downscaling of spatial rainfall: A proof of concept. Hydrol. Earth Syst. Sci., 15, 14451457, https://doi.org/10.5194/hess-15-1445-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., L. E. Hay, W. J. Gutowski, R. W. Arritt, E. S. Takle, Z. Pan, G. H. Leavesley, and M. P. Clark, 2000: Hydrological responses to dynamically and statistically downscaled climate model output. Geophys. Res. Lett., 27, 11991202, https://doi.org/10.1029/1999GL006078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., S. M. Robeson, and K. Matsuura, 2012: A refined index of model performance. Int. J. Climatol., 32, 20882094, https://doi.org/10.1002/joc.2419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wit, E., E. van den Heuvel, and J.-W. Romeijn, 2012: ‘All models are wrong...’: An introduction to model uncertainty. Stat. Neerl., 66, 217236, https://doi.org/10.1111/j.1467-9574.2012.00530.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., M. Xiao, V. P. Singh, and X. Chen, 2013: Copula-based risk evaluation of hydrological droughts in the East River basin, China. Stochastic Environ. Res. Risk Assess., 27, 13971406, https://doi.org/10.1007/s00477-012-0675-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1574 616 71
PDF Downloads 1032 166 10