Using a Particle Filter to Estimate the Spatial Distribution of the Snowpack Water Equivalent

Philippe Cantet Département de génie civil et génie du bâtiment, Université de Sherbrooke, Sherbrooke, Quebec, Canada

Search for other papers by Philippe Cantet in
Current site
Google Scholar
PubMed
Close
,
M. A. Boucher Département de génie civil et génie du bâtiment, Université de Sherbrooke, Sherbrooke, Quebec, Canada

Search for other papers by M. A. Boucher in
Current site
Google Scholar
PubMed
Close
,
S. Lachance-Coutier Direction de l’expertise hydrique, Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Quebec, Quebec, Canada

Search for other papers by S. Lachance-Coutier in
Current site
Google Scholar
PubMed
Close
,
R. Turcotte Direction de l’expertise hydrique, Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Quebec, Quebec, Canada

Search for other papers by R. Turcotte in
Current site
Google Scholar
PubMed
Close
, and
V. Fortin Centre Météorologique Canadien, Recherche en prévision numérique environnementale, Environnement et Changement climatique Canada, Dorval, Quebec, Canada.

Search for other papers by V. Fortin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A snow model forced by temperature and precipitation is used to simulate the spatial distribution of snow water equivalent (SWE) over a 600 000 km2 portion of the province of Quebec, Canada. We propose to improve model simulations by assimilating SWE data from sporadic manual snow surveys with a particle filter. A temporally and spatially correlated perturbation of the meteorological forcing is used to generate the set of particles. The magnitude of the perturbations is fixed objectively. First, the particle filter and direct insertion were both applied on 88 sites for which measured SWE consisted of more or less five values per year over a period of 17 years. The temporal correlation of perturbations enables us to improve the accuracy and the ensemble dispersion of the particle filter, while the spatial correlation leads to a spatial coherence in the particle weights. The spatial estimates of SWE obtained with the particle filter are compared with those obtained through optimal interpolation of the snow survey data, which is the current operational practice in Quebec. Cross-validation results as well as validation against an independent dataset show that the proposed particle filter enables us to improve the spatial distribution of the snow water equivalent compared with optimal interpolation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Philippe Cantet, cantet.philip@gmail.com

Abstract

A snow model forced by temperature and precipitation is used to simulate the spatial distribution of snow water equivalent (SWE) over a 600 000 km2 portion of the province of Quebec, Canada. We propose to improve model simulations by assimilating SWE data from sporadic manual snow surveys with a particle filter. A temporally and spatially correlated perturbation of the meteorological forcing is used to generate the set of particles. The magnitude of the perturbations is fixed objectively. First, the particle filter and direct insertion were both applied on 88 sites for which measured SWE consisted of more or less five values per year over a period of 17 years. The temporal correlation of perturbations enables us to improve the accuracy and the ensemble dispersion of the particle filter, while the spatial correlation leads to a spatial coherence in the particle weights. The spatial estimates of SWE obtained with the particle filter are compared with those obtained through optimal interpolation of the snow survey data, which is the current operational practice in Quebec. Cross-validation results as well as validation against an independent dataset show that the proposed particle filter enables us to improve the spatial distribution of the snow water equivalent compared with optimal interpolation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Philippe Cantet, cantet.philip@gmail.com
Save
  • Abbaszadeh, P., H. Moradkhani, and H. Yan, 2018: Enhancing hydrologic data assimilation by evolutionary particle filter and Markov chain Monte Carlo. Adv. Water Resour., 111, 192204, https://doi.org/10.1016/j.advwatres.2017.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 2006: Snow accumulation and ablation model—SNOW-17. User’s manual, NWS, 61 pp., http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/22snow17.pdf.

  • Arlot, A., and A. Celisse, 2010: A survey of cross-validation procedures for model selection. Stat. Surv., 4, 4079, https://doi.org/10.1214/09-SS054.

  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, O., 2017: Grilles climatiques quotidiennes du Réseau de surveillance du climat du Québec, Version 2 - Guide d’utilisation. Québec, ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Direction du suivi de l’état de l’environnement, 27 pp.

  • Burgess, T. M., and R. Webster, 1980: Optimal interpolation and isarithmic mapping of soil properties. Eur. J. Soil Sci., 31, 315331, https://doi.org/10.1111/j.1365-2389.1980.tb02084.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., D. E. Rupp, R. A. Woods, X. Zheng, R. P. Ibbitt, A. G. Slater, J. Schmidt, and M. J. Uddstrom, 2008: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Adv. Water Resour., 31, 13091324, https://doi.org/10.1016/j.advwatres.2008.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dechant, C., and H. Moradkhani, 2011: Radiance data assimilation for operational snow and streamflow forecasting. Adv. Water Resour., 34, 351364, https://doi.org/10.1016/j.advwatres.2010.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., J. P. Walker, and P. R. Houser, 2005: Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ., 97, 6882, https://doi.org/10.1016/j.rse.2005.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douc, R., and O. Cappé, 2005: Comparison of resampling schemes for particle filtering. Proc. Fourth Int. Symp. on Image and Signal Processing and Analysis, Zagreb, Croatia, IEEE, 64–69, https://doi.org/10.1109/ISPA.2005.195385.

    • Crossref
    • Export Citation
  • Doucet, A., and A. M. Johansen, 2009: A tutorial on particle filtering and smoothing: Fifteen years later. The Oxford Handbook of Nonlinear Filtering, D. Crisan and B. Rozovskiĭ, Oxford University Press, 656–704.

  • Duan, Q., S. Sorooshian, and V. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 10151031, https://doi.org/10.1029/91WR02985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., S. Morin, Y. Lejeune, and C. B. Ménard, 2013: A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131148, https://doi.org/10.1016/j.advwatres.2012.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, https://doi.org/10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, S. J., G. E. Liston, C. A. Hiemstra, and S. D. Miller, 2012: Assimilating MODIS and AMSR-E snow observations in a snow evolution model. J. Hydrometeor., 13, 14751492, https://doi.org/10.1175/JHM-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, J.-P., R. Turcotte, S. Massicotte, R. Moussa, J. Fitzback, and J.-P. Villeneuve, 2001: Distributed watershed model compatible with remote sensing and GIS data. I: Description of model. J. Hydrol. Eng., 6, 9199, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(91).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garand, L., and C. Grassotti, 1995: Toward an objective analysis of rainfall rate combining observations and short-term forecast model estimates. J. Appl. Meteor., 34, 19621977, https://doi.org/10.1175/1520-0450(1995)034<1962:TAOAOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goita, K., A. Walker, and B. Goodison, 2003: Algorithm development and use for the estimation of snow water equivalent in the boreal forest using passive microwave data. Int. J. Remote Sens., 24, 10971102, https://doi.org/10.1080/0143116021000044805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, N. J., D. J. Salmond, and A. F. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc., F, Radar Signal Process., 140, 107113, https://doi.org/10.1049/ip-f-2.1993.0015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leisenring, M., and H. Moradkhani, 2011: Snow water equivalent prediction using Bayesian data assimilation methods. Stochastic Environ. Res. Risk Assess., 25, 253270, https://doi.org/10.1007/s00477-010-0445-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and S. Simonovic, 2002: System dynamics model for predicting floods from snowmelt in North American prairie watersheds. Hydrol. Processes, 16, 26452666, https://doi.org/10.1002/hyp.1064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. D. Peters-Lidard, S. Kumar, J. L. Foster, M. Shaw, Y. Tian, and G. M. Fall, 2013: Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour., 54, 208227, https://doi.org/10.1016/j.advwatres.2013.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Moreno, J., and D. Nogués-Bravo, 2006: Interpolating local snow depth data: An evaluation of methods. Hydrol. Processes, 20, 22172232, https://doi.org/10.1002/hyp.6199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Moreno, J., S. R. Fassnacht, S. Beguería, and J. B. P. Latron, 2011: Variability of snow depth at the plot scale: Implications for mean depth estimation and sampling strategies. Cryosphere, 5, 617629, https://doi.org/10.5194/tc-5-617-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, J., D. Gustafsson, F. Hüsler, and T. Jonas, 2014: Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resour. Res., 50, 78167835, https://doi.org/10.1002/2014WR015302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, J., A. Winstral, A. S. Stordal, R. Essery, and T. Jonas, 2017: Improving physically based snow simulations by assimilating snow depths using the particle filter. Water Resour. Res., 53, 11251143, https://doi.org/10.1002/2016WR019092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., and A. Winstral, 2001: Comparison of snow deposition, the snow cover energy balance, and snowmelt at two sites in a semiarid mountain basin. J. Hydrometeor., 2, 213227, https://doi.org/10.1175/1525-7541(2001)002<0213:COSDTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1963: Principles of geostatistics. Econ. Geol., 58, 12461266, https://doi.org/10.2113/gsecongeo.58.8.1246.

  • Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian, 2005a: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser, 2005b: Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour., 28, 135147, https://doi.org/10.1016/j.advwatres.2004.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., C. M. DeChant, and S. Sorooshian, 2012: Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method. Water Resour. Res., 48, W12520, https://doi.org/10.1029/2012WR012144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohmura, A., 2001: Physical basis for the temperature-based melt-index method. J. Appl. Meteor., 40, 753761, https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pathiraja, S., H. Moradkhani, L. Marshall, A. Sharma, and G. Geenens, 2018: Data driven model uncertainty estimation in data assimilation. Water Resour. Res., 54, 10771092, https://doi.org/10.1002/2018WR022627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefli, B., B. Hingray, and A. Musy, 2007: Climate change and hydropower production in the Swiss Alps: Quantification of potential impacts and related modelling uncertainties. Hydrol. Earth Syst. Sci., 11, 11911205, https://doi.org/10.5194/hess-11-1191-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidou, O., V. Fortin, A. St-Hilaire, A.-C. Favre, S. E. Adlouni, and B. Bobée, 2006: Estimating the snow water equivalent on the Gatineau catchment using hierarchical Bayesian modelling. Hydrol. Processes, 20, 839855, https://doi.org/10.1002/hyp.6127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and M. P. Clark, 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7, 478493, https://doi.org/10.1175/JHM505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, M., 1974: Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc., 36B, 111147.

  • Thiboult, A., and F. Anctil, 2015: On the difficulty to optimally implement the ensemble Kalman filter: An experiment based on many hydrological models and catchments. J. Hydrol., 529, 11471160, https://doi.org/10.1016/j.jhydrol.2015.09.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turcotte, R., L.-G. Fortin, V. Fortin, J.-P. Fortin, and J.-P. Villeneuve, 2007: Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada. Hydrol. Res., 38, 211234, https://doi.org/10.2166/nh.2007.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uboldi, F., C. Lussana, and M. Salvati, 2008: Three-dimensional spatial interpolation of surface meteorological observations from high-resolution local networks. Meteor. Appl., 15, 331345, https://doi.org/10.1002/met.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., H.-J. Hendricks Franssen, X. Han, J. A. Vrugt, and H. Vereecken, 2017: State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter. Hydrol. Earth Syst. Sci., 21, 49274958, https://doi.org/10.5194/hess-21-4927-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1029 404 51
PDF Downloads 731 128 9