Changes in Extreme Precipitation in the Northeast United States: 1979–2014

Macy E. Howarth Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Macy E. Howarth in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4401-1548
,
Christopher D. Thorncroft Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Christopher D. Thorncroft in
Current site
Google Scholar
PubMed
Close
, and
Lance F. Bosart Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme precipitation can have significant adverse impacts on infrastructure and property, human health, and local economies. This paper examines recent changes in extreme precipitation in the northeast United States. Daily station data from 58 stations missing less than 5% of days for the years 1979–2014 from the U.S. Historical Climatology Network were used to analyze extreme precipitation, defined as the top 1% of days with precipitation. A statistically significant (95% confidence level) increasing trend of the threshold for the top 1% of extreme precipitation events was found (0.3 mm yr−1). This increasing trend was due to both an increase in the frequency of extreme events and the magnitude of extreme events. Rainfall events ≥ 150 mm (24-h accumulation) increased in frequency from 6 events between 1979 and 1996 to 25 events between 1997 and 2014, a 317% increase. The annual daily maximum precipitation, or the highest recorded precipitation amount in a given year, increased by an average of 1.6 mm yr−1, a total increase of 58.0 mm. Decreasing trends in extreme precipitation were observed east of Lake Erie during the warm season. Increasing trends in extreme precipitation were most robust during the fall months of September, October, and November, and particularly at locations further inland. The analysis showed that increases in events that were tropical in nature, or associated with tropical moisture, led to the observed increase in extreme precipitation during the fall months.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Macy E. Howarth, mehowarth@albany.edu

Abstract

Extreme precipitation can have significant adverse impacts on infrastructure and property, human health, and local economies. This paper examines recent changes in extreme precipitation in the northeast United States. Daily station data from 58 stations missing less than 5% of days for the years 1979–2014 from the U.S. Historical Climatology Network were used to analyze extreme precipitation, defined as the top 1% of days with precipitation. A statistically significant (95% confidence level) increasing trend of the threshold for the top 1% of extreme precipitation events was found (0.3 mm yr−1). This increasing trend was due to both an increase in the frequency of extreme events and the magnitude of extreme events. Rainfall events ≥ 150 mm (24-h accumulation) increased in frequency from 6 events between 1979 and 1996 to 25 events between 1997 and 2014, a 317% increase. The annual daily maximum precipitation, or the highest recorded precipitation amount in a given year, increased by an average of 1.6 mm yr−1, a total increase of 58.0 mm. Decreasing trends in extreme precipitation were observed east of Lake Erie during the warm season. Increasing trends in extreme precipitation were most robust during the fall months of September, October, and November, and particularly at locations further inland. The analysis showed that increases in events that were tropical in nature, or associated with tropical moisture, led to the observed increase in extreme precipitation during the fall months.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Macy E. Howarth, mehowarth@albany.edu
Save
  • Agel, L., M. Barlow, J.-H. Qian, F. Colby, E. Douglas, and T. Eichler, 2015: Climatology of daily precipitation and extreme precipitation events in the northeast United States. J. Hydrometeor., 16, 25372557, https://doi.org/10.1175/JHM-D-14-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and J. Cangialosi, 2011: Tropical cyclone report: Hurricane Irene, 21–28 August 2011. Rep. AL092011, National Hurricane Center, 45 pp., https://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf.

  • Brown, P. J., R. S. Bradley, and F. T. Keimig, 2010: Changes in extreme climate indices for the northeastern UNITED STATES, 1870–2005. J. Climate, 23, 65556572, https://doi.org/10.1175/2010JCLI3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, W. P., G. H. Taylor, M. K. Doggett, and J. I. Smith, 2007: Observer bias in daily precipitation measurements at United States cooperative network stations. Bull. Amer. Meteor. Soc., 88, 899912, https://doi.org/10.1175/BAMS-88-6-899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., J. L. Evans, P. Y. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425, https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, A., K. E. Kunkel, and A. Matonse, 2015: The seasonal nature of extreme hydrological events in the northeastern united states. J. Hydrometeor., 16, 20652085, https://doi.org/10.1175/JHM-D-14-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, M. L., and R. S. Bradley, 2007: Variations of twentieth-century temperature and precipitation extreme indicators in the northeast united states. J. Climate, 20, 54015417, https://doi.org/10.1175/2007JCLI1594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Coauthors, 1999: Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243283, https://doi.org/10.1023/A:1005432803188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2001: Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Amer. Meteor. Soc., 82, 219246, https://doi.org/10.1175/1520-0477(2001)082<0219:HPAHSI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, J. Perlwitz, X.-W. Quan, K. Wolter, and L. Cheng, 2016: Characterizing recent trends in U.S. heavy precipitation. J. Climate, 29, 23132332, https://doi.org/10.1175/JCLI-D-15-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., J. M. Winter, E. C. Osterberg, R. M. Horton, and B. Beckage, 2017: Total and extreme precipitation changes over the northeastern United States. J. Hydrometeor., 18, 17831798, https://doi.org/10.1175/JHM-D-16-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., G. A. Hodgkins, B. D. Keim, and R. W. Dudley, 2004: Changes in the proportion of precipitation occurring as snow in New England (1949–2000). J. Climate, 17, 26262636, https://doi.org/10.1175/1520-0442(2004)017<2626:CITPOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2001: Climate Change 2001: The Scientific Basis. J. T. Houghton et al., Eds. Cambridge University Press, 881 pp.

  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 2003: North American trends in extreme precipitation. Nat. Hazards, 29, 291305, https://doi.org/10.1023/A:1023694115864.

  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, https://doi.org/10.1029/2010GL045164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, https://doi.org/10.1175/BAMS-D-11-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. J. Boho, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Voss, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metz, N. D., 2011: Persistence and dissipation of Lake Michigan-crossing mesoscale convective systems. Ph.D. thesis, University at Albany, State University of New York, 237 pp.

  • NCEI, 2017: Billion-dollar weather and climate disasters: Table of events. NOAA/NCEI, https://www.ncdc.noaa.gov/billions/.

  • Olson, S. A., 2007: Flood of May 2006 in New Hampshire. USGS Open-File Rep. 2007-1122, 40 pp, https://pubs.usgs.gov/of/2007/1122/.

    • Crossref
    • Export Citation
  • Peterson, T. C., and Coauthors, 2013: Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bull. Amer. Meteor. Soc., 94, 821834, https://doi.org/10.1175/BAMS-D-12-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, V., and L. Bengtsson, 2002: Secular trends in daily precipitation characteristics: Greenhouse gas simulation with a coupled AOGCM. Climate Dyn., 19, 123140, https://doi.org/10.1007/s00382-001-0218-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • The Associated Press, 2012: Hurricane Irene one year later: Storm cost $15.8 in damage from Florida to New York to the Caribbean. New York Daily News, 27 August, http://www.nydailynews.com/new-york/hurricane-irene-year-storm-cost-15-8-damage-florida-new-york-caribbean-article-1.1145302.

  • U.S. Environmental Protection Agency, 2016: Climate change indicators: Great lakes water levels and temperatures. Environmental Protection Agency, https://www.epa.gov/climate-indicators/great-lakes#ref7.

  • Walsh, J., and Coauthors, 2014: Our changing climate. Climate change impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program Rep., 19–67, https://doi.org/10.7930/J0KW5CXT.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2367 566 49
PDF Downloads 1875 407 25