Impact of Soil Moisture Data Resolution on Soil Moisture and Surface Heat Flux Estimates through Data Assimilation: A Case Study in the Southern Great Plains

Yang Lu Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Search for other papers by Yang Lu in
Current site
Google Scholar
PubMed
Close
,
Jianzhi Dong Hydrology and Remote Sensing Laboratory, USDA, Beltsville, Maryland

Search for other papers by Jianzhi Dong in
Current site
Google Scholar
PubMed
Close
, and
Susan C. Steele-Dunne Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Search for other papers by Susan C. Steele-Dunne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial heterogeneity and temporal variation of soil moisture and surface heat fluxes are key to many geophysical and environmental studies. It has been demonstrated that they can be mapped by assimilating soil thermal and wetness information into surface energy balance models. The aim of this work is to determine whether enhancing the spatial resolution or temporal sampling frequency of soil moisture data could improve soil moisture or surface heat flux estimates. Two experiments are conducted in an area mainly covered by grassland, and land surface temperature (LST) observations from the Geostationary Operational Environmental Satellite (GOES) mission are assimilated together with either an enhanced L-band passive soil moisture product (9 km, 2–3 days) from the Soil Moisture Active Passive (SMAP) mission or a merged product (36 km, quasi-daily) from the SMAP and the Soil Moisture Ocean Salinity (SMOS) mission. The results suggest that the availability of soil moisture observations is increased by 41% after merging data from the SMAP and the SMOS missions. A comparison with results from a previous study that assimilated a coarser SMAP soil moisture product (36 km, 2–3 days) suggests that enhancing the temporal sampling frequency of soil moisture observations leads to improved soil moisture estimates at both the surface and root zone, and the largest improvement is seen in the bias metric (0.008 and 0.007 m3 m−3 on average at the surface and root zone, respectively). Enhancing the spatial resolution, however, does not significantly improve soil moisture estimates, particularly at the surface. Surface heat flux estimates from assimilating soil moisture data of different spatial or temporal resolutions are very similar.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Lu, y.lu-1@tudelft.nl

Abstract

The spatial heterogeneity and temporal variation of soil moisture and surface heat fluxes are key to many geophysical and environmental studies. It has been demonstrated that they can be mapped by assimilating soil thermal and wetness information into surface energy balance models. The aim of this work is to determine whether enhancing the spatial resolution or temporal sampling frequency of soil moisture data could improve soil moisture or surface heat flux estimates. Two experiments are conducted in an area mainly covered by grassland, and land surface temperature (LST) observations from the Geostationary Operational Environmental Satellite (GOES) mission are assimilated together with either an enhanced L-band passive soil moisture product (9 km, 2–3 days) from the Soil Moisture Active Passive (SMAP) mission or a merged product (36 km, quasi-daily) from the SMAP and the Soil Moisture Ocean Salinity (SMOS) mission. The results suggest that the availability of soil moisture observations is increased by 41% after merging data from the SMAP and the SMOS missions. A comparison with results from a previous study that assimilated a coarser SMAP soil moisture product (36 km, 2–3 days) suggests that enhancing the temporal sampling frequency of soil moisture observations leads to improved soil moisture estimates at both the surface and root zone, and the largest improvement is seen in the bias metric (0.008 and 0.007 m3 m−3 on average at the surface and root zone, respectively). Enhancing the spatial resolution, however, does not significantly improve soil moisture estimates, particularly at the surface. Surface heat flux estimates from assimilating soil moisture data of different spatial or temporal resolutions are very similar.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Lu, y.lu-1@tudelft.nl
Save
  • Abdolghafoorian, A., L. Farhadi, S. M. Bateni, S. Margulis, and T. Xu, 2017: Characterizing the effect of vegetation dynamics on the bulk heat transfer coefficient to improve variational estimation of surface turbulent fluxes. J. Hydrometeor., 18, 321333, https://doi.org/10.1175/JHM-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 25572570, https://doi.org/10.1175/2008JCLI2759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartalis, Z., W. Wagner, V. Naeimi, S. Hasenauer, K. Scipal, H. Bonekamp, J. Figa, and C. Anderson, 2007: Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett., 34, L20401, https://doi.org/10.1029/2007GL031088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G., M. Menenti, R. Feddes, and A. Holtslag, 1998: A remote sensing surface energy balance algorithm for land (SEBAL). 1. formulation. J. Hydrol., 212–213, 198212, https://doi.org/10.1016/S0022-1694(98)00253-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateni, S., and D. Entekhabi, 2012a: Relative efficiency of land surface energy balance components. Water Resour. Res., 48, W04510, https://doi.org/10.1029/2011WR011357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateni, S., and D. Entekhabi, 2012b: Surface heat flux estimation with the ensemble Kalman smoother: Joint estimation of state and parameters. Water Resour. Res., 48, W08521, https://doi.org/10.1029/2011WR011542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateni, S., and S. Liang, 2012: Estimating surface energy fluxes using a dual-source data assimilation approach adjoined to the heat diffusion equation. J. Geophys. Res., 117, D17118, https://doi.org/10.1029/2012JD017618.

    • Search Google Scholar
    • Export Citation
  • Bateni, S., D. Entekhabi, and D.-S. Jeng, 2013: Variational assimilation of land surface temperature and the estimation of surface energy balance components. J. Hydrol., 481, 143156, https://doi.org/10.1016/j.jhydrol.2012.12.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateni, S., D. Entekhabi, S. Margulis, F. Castelli, and L. Kergoat, 2014: Coupled estimation of surface heat fluxes and vegetation dynamics from remotely sensed land surface temperature and fraction of photosynthetically active radiation. Water Resour. Res., 50, 84208440, https://doi.org/10.1002/2013WR014573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer-Marschallinger, B., and Coauthors, 2018: Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles. IEEE Trans. Geosci. Remote Sens., 57, 520539, https://doi.org/10.1109/TGRS.2018.2858004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, J. E., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor., 14, 977988, https://doi.org/10.1175/JHM-D-12-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boni, G., D. Entekhabi, and F. Castelli, 2001: Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation. Water Resour. Res., 37, 17131722, https://doi.org/10.1029/2001WR900020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2017: A review of the applications of ASCAT soil moisture products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 22852306, https://doi.org/10.1109/JSTARS.2017.2651140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, X., and Coauthors, 2017: Validation of SMAP soil moisture for the SMAPVEX15 field campaign using a hyper-resolution model. Water Resour. Res., 53, 30133028, https://doi.org/10.1002/2016WR019967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caparrini, F., F. Castelli, and D. Entekhabi, 2003: Mapping of land-atmosphere heat fluxes and surface parameters with remote sensing data. Bound.-Layer Meteor., 107, 605633, https://doi.org/10.1023/A:1022821718791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caparrini, F., F. Castelli, and D. Entekhabi, 2004a: Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences. J. Hydrometeor., 5, 145159, https://doi.org/10.1175/1525-7541(2004)005<0145:EOSTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caparrini, F., F. Castelli, and D. Entekhabi, 2004b: Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery. Water Resour. Res., 40, W12515, https://doi.org/10.1029/2004WR003358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelli, F., D. Entekhabi, and E. Caporali, 1999: Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance. Water Resour. Res., 35, 31153125, https://doi.org/10.1029/1999WR900140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. K., and Coauthors, 2016: Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens., 54, 49945007, https://doi.org/10.1109/TGRS.2016.2561938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. K., and Coauthors, 2018: Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ., 204, 931941, https://doi.org/10.1016/j.rse.2017.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B., S. Idso, and R. Reginato, 1987: Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agric. For. Meteor., 39, 283297, https://doi.org/10.1016/0168-1923(87)90021-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colliander, A., and Coauthors, 2017: Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ., 191, 215231, https://doi.org/10.1016/j.rse.2017.01.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crago, R. D., 1996: Conservation and variability of the evaporative fraction during the daytime. J. Hydrol., 180, 173194, https://doi.org/10.1016/0022-1694(95)02903-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crago, R. D., and W. Brutsaert, 1996: Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio. J. Hydrol., 178, 241255, https://doi.org/10.1016/0022-1694(95)02803-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and W. P. Kustas, 2005: Utility of assimilating surface radiometric temperature observations for evaporative fraction and heat transfer coefficient retrieval. Bound.-Layer Meteor., 115, 105130, https://doi.org/10.1007/s10546-004-2121-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, N., 2013: SMAP ancillary data report: Soil attributes. SMAP Science Doc. 044, JPL D-53058, 16 pp., http://smap.jpl.nasa.gov/files/smap2/044_soil_attrib.pdf.

  • De Lannoy, G. J., and R. H. Reichle, 2016: Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model. Hydrol. Earth Syst. Sci., 20, 4895, https://doi.org/10.5194/hess-20-4895-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J., R. H. Reichle, J. Peng, Y. Kerr, R. Castro, E. J. Kim, and Q. Liu, 2015: Converting between SMOS and SMAP level-1 brightness temperature observations over nonfrozen land. IEEE Geosci. Remote Sens. Lett., 12, 19081912, https://doi.org/10.1109/LGRS.2015.2437612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., F. J. Zeng, A. Ducharne, J. C. Morrill, and R. D. Koster, 2000: The sensitivity of surface fluxes to soil water content in three land surface schemes. J. Hydrometeor., 1, 121134, https://doi.org/10.1175/1525-7541(2000)001<0121:TSOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., S. C. Steele-Dunne, T. E. Ochsner, and N. van de Giesen, 2016: Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother. Adv. Water Resour., 91, 104116, https://doi.org/10.1016/j.advwatres.2016.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, https://doi.org/10.5194/hess-15-1675-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2015: Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ., 162, 380395, https://doi.org/10.1016/j.rse.2014.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2017: ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, S., and D. Entekhabi, 2006: Land surface state and flux estimation using the ensemble Kalman smoother during the Southern Great Plains 1997 field experiment. Water Resour. Res., 42, W01407, https://doi.org/10.1029/2005WR004334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2014: SMAP Handbook Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space. JPL CL14-2285, Jet Propulsion Laboratory, 180 pp., https://smap.jpl.nasa.gov/files/smap2/SMAP_Handbook_FINAL_1_JULY_2014_Web.pdf.

  • Farhadi, L., D. Entekhabi, G. Salvucci, and J. Sun, 2014: Estimation of land surface water and energy balance parameters using conditional sampling of surface states. Water Resour. Res., 50, 18051822, https://doi.org/10.1002/2013WR014049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez-Moran, R., and Coauthors, 2017: SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product. Remote Sens., 9, 457, https://doi.org/10.3390/rs9050457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. C., I. F. Trigo, J. Macedo, C. Barroso, R. Silva, and R. Perdigão, 2013: Land surface temperature from multiple geostationary satellites. Int. J. Remote Sens., 34, 30513068, https://doi.org/10.1080/01431161.2012.716925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. N., T. J. Schmugge, W. P. Kustas, K. L. Brubaker, and J. Prueger, 2003: Surface energy fluxes over El Reno, Oklahoma, using high-resolution remotely sensed data. Water Resour. Res., 39, 1164, https://doi.org/10.1029/2002WR001734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, A. Chehbouni, G. Boulet, and B. Duchemin, 2007: Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteor., 143, 1329, https://doi.org/10.1016/j.agrformet.2006.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., and Coauthors, 2018: Evaluation of the weak constraint data assimilation approach for estimating turbulent heat fluxes at six sites. Remote Sens., 10, 1994, https://doi.org/10.3390/rs10121994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., Y. Li, J. Gu, L. Lu, and X. Li, 2015: Improving estimation of evapotranspiration under water-limited conditions based on SEBS and MODIS data in arid regions. Remote Sens., 7, 16 79516 814, https://doi.org/10.3390/rs71215854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.

  • Imaoka, K., and Coauthors, 2010: Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE, 98, 717734, https://doi.org/10.1109/JPROC.2009.2036869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010JG001566.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., P. Waldteufel, J.-P. Wigneron, J. Martinuzzi, J. Font, and M. Berger, 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735, https://doi.org/10.1109/36.942551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilic, A., R. Allen, R. Trezza, I. Ratcliffe, B. Kamble, C. Robison, and D. Ozturk, 2016: Sensitivity of evapotranspiration retrievals from the METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat 7 and 8 surface temperature. Remote Sens. Environ., 185, 198209, https://doi.org/10.1016/j.rse.2016.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knyazikhin, Y., and Coauthors, 1999: MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15). Algorithm Theoretical Basis Doc., NASA, 130 pp., https://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf.

  • Kumar, S., T. Holmes, D. M. Mocko, S. Wang, and C. Peters-Lidard, 2018: Attribution of flux partitioning variations between land surface models over the continental us. Remote Sens., 10, 751, https://doi.org/10.3390/rs10050751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W., K. Humes, J. Norman, and M. Moran, 1996: Single-and dual-source modeling of surface energy fluxes with radiometric surface temperature. J. Appl. Meteor., 35, 110121, https://doi.org/10.1175/1520-0450(1996)035<0110:SADSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lievens, H., and N. E. Verhoest, 2011: On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling, the IEM, and effective roughness parameters. IEEE Geosci. Remote Sens. Lett., 8, 740744, https://doi.org/10.1109/LGRS.2011.2106109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., J. Dong, S. C. Steele-Dunne, and N. van de Giesen, 2016: Estimating surface turbulent heat fluxes from land surface temperature and soil moisture observations using the particle batch smoother. Water Resour. Res., 52, 90869108, https://doi.org/10.1002/2016WR018943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., S. C. Steele-Dunne, L. Farhadi, and N. van de Giesen, 2017: Mapping surface heat fluxes by assimilating SMAP soil moisture and GOES land surface temperature data. Water Resour. Res., 53, 10 85810 877, https://doi.org/10.1002/2017WR021415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L., and Coauthors, 2003: Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the Southern Great Plains. J. Geophys. Res., 108, 8843, https://doi.org/10.1029/2002JD003246.

    • Search Google Scholar
    • Export Citation
  • Malenovský, Z., H. Rott, J. Cihlar, M. E. Schaepman, G. García-Santos, R. Fernandes, and M. Berger, 2012: Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ., 120, 91101, https://doi.org/10.1016/j.rse.2011.09.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., and E. F. Wood, 2006: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sens. Environ., 105, 271285, https://doi.org/10.1016/j.rse.2006.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem, 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229, https://doi.org/10.1109/TGRS.2002.808243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J. M., W. P. Kustas, and K. S. Humes, 1995: A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteor., 77, 263293, https://doi.org/10.1016/0168-1923(95)02265-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paloscia, S., S. Pettinato, E. Santi, C. Notarnicola, L. Pasolli, and A. Reppucci, 2013: Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ., 134, 234248, https://doi.org/10.1016/j.rse.2013.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., M. Borsche, Y. Liu, and A. Loew, 2013: How representative are instantaneous evaporative fraction measurements for daytime fluxes? Hydrol. Earth Syst. Sci., 17, 39133919, https://doi.org/10.5194/hess-17-3913-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petropoulos, G. P., G. Ireland, and B. Barrett, 2015: Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth, 83–84, 3656, https://doi.org/10.1016/j.pce.2015.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigden, A. J., and G. D. Salvucci, 2015: Evapotranspiration based on equilibrated relative humidity (ETRHEQ): Evaluation over the continental U.S. Water Resour. Res., 51, 29512973, https://doi.org/10.1002/2014WR016072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeghi, M., E. Babaeian, M. Tuller, and S. B. Jones, 2017: The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ., 198, 5268, https://doi.org/10.1016/j.rse.2017.05.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaap, M. G., F. J. Leij, and M. T. Van Genuchten, 2001: ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163176, https://doi.org/10.1016/S0022-1694(01)00466-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA natural resources conservation service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sini, F., G. Boni, F. Caparrini, and D. Entekhabi, 2008: Estimation of large-scale evaporation fields based on assimilation of remotely sensed land temperature. Water Resour. Res., 44, W06410, https://doi.org/10.1029/2006WR005574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci., 6, 85100, https://doi.org/10.5194/hess-6-85-2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, R., Z.-L. Li, and B. Tang, 2010: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ., 114, 540551, https://doi.org/10.1016/j.rse.2009.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., E. F. Wood, C. R. Ferguson, and J. B. Fisher, 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823, https://doi.org/10.1016/j.rse.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xu, T., S. Bateni, S. Liang, D. Entekhabi, and K. Mao, 2014: Estimation of surface turbulent heat fluxes via variational assimilation of sequences of land surface temperatures from Geostationary Operational Environmental Satellites. J. Geophys. Res. Atmos., 119, 10 78010 798, https://doi.org/10.1002/2014JD021814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, T., S. M. Bateni, and S. Liang, 2015: Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (hiWATER-MUSOEXE). IEEE Geosci. Remote Sens. Lett., 12, 6872, https://doi.org/10.1109/LGRS.2014.2326180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, T., S. M. Bateni, S. A. Margulis, L. Song, S. Liu, and Z. Xu, 2016: Partitioning evapotranspiration into soil evaporation and canopy transpiration via a two-source variational data assimilation system. J. Hydrometeor., 17, 23532370, https://doi.org/10.1175/JHM-D-15-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, T., S. Bateni, C. Neale, T. Auligne, and S. Liu, 2018: Estimation of turbulent heat fluxes by assimilation of land surface temperature observations from GOES satellites into an ensemble Kalman smoother framework. J. Geophys. Res. Atmos., 123, 24092423, https://doi.org/10.1002/2017JD027732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, T., X. He, S. M. Bateni, T. Auligne, S. Liu, Z. Xu, J. Zhou, and K. Mao, 2019: Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites. Remote Sens. Environ., 221, 444461, https://doi.org/10.1016/j.rse.2018.11.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., H. Su, R. Zhang, J. Tian, and L. Li, 2015: An enhanced two-source evapotranspiration model for land (ETEML): Algorithm and evaluation. Remote Sens. Environ., 168, 5465, https://doi.org/10.1016/j.rse.2015.06.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., J. Qiu, R. Zhang, S. Huang, S. Chen, H. Wang, J. Luo, and Y. Fan, 2018: Intercomparison of three two-source energy balance models for partitioning evaporation and transpiration in semiarid climates. Remote Sens., 10, 1149, https://doi.org/10.3390/rs10071149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., R. Tang, B.-H. Tang, H. Wu, and Z.-L. Li, 2015: A simple method for soil moisture determination from LST–VI feature space using nonlinear interpolation based on thermal infrared remotely sensed data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 638648, https://doi.org/10.1109/JSTARS.2014.2371135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., A. Li, H. Jin, Z. Zhang, J. Bian, and G. Yin, 2017: Performance evaluation of the triangle-based empirical soil moisture relationship models based on Landsat-5 TM data and in situ measurements. IEEE Trans. Geosci. Remote Sens., 55, 26322645, https://doi.org/10.1109/TGRS.2017.2649522.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 694 282 30
PDF Downloads 426 110 4