• Alizadeh-Choobari, O., and M. Gharaylou, 2017: Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmos. Res., 185, 5364, https://doi.org/10.1016/j.atmosres.2016.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binder, P., and Coauthors, 1996: MAP—Mesoscale Alpine Programme design proposal. MAP Programme Office, 77 pp. [Available from MAP Programme Office c/o Swiss Meteorological Institute, Krähbühlstrasse 58, CH-8044 Zürich, Switzerland.]

  • Cober, S. G., G. A. Isaac, and J. W. Strapp, 1995: Aircraft icing measurements in east coast winter storms. J. Appl. Meteor., 34, 88100, https://doi.org/10.1175/1520-0450-34.1.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128, 593617, https://doi.org/10.1175/1520-0493(2000)128<0593:TFFEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Y. Zeng, 2004: Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev., 132, 27802801, https://doi.org/10.1175/MWR2821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. J. Westrick, and C. F. Mass, 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14, 137154, https://doi.org/10.1175/1520-0434(1999)014<0137:EOMAEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., C. F. Mass, and K. J. Westrick, 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Wea. Forecasting, 15, 730744, https://doi.org/10.1175/1520-0434(2000)015<0730:MPVOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., M. F. Garvert, J. B. Wolfe, C. F. Mass, and C. P. Woods, 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62, 35353558, https://doi.org/10.1175/JAS3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrick, R., and C. F. Mass, 2019: Evaluating simulated microphysics during OLYMPEX Using GPM satellite observations. J. Atmos. Sci., 76, 10931105, https://doi.org/10.1175/JAS-D-18-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and Coauthors, 2000: Hydrological aspects of weather prediction and flood warnings: Report of the Ninth Prospectus Development Team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 81, 26652680, https://doi.org/10.1175/1520-0477(2000)081<2653:EFITST>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2014: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos. Chem. Phys., 14, 81101, https://doi.org/10.5194/acp-14-81-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, and P. J. DeMott, 2017: Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds. Atmos. Chem. Phys., 17, 10171035, https://doi.org/10.5194/acp-17-1017-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the Eighth Prospectus Development Team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79, 285299, https://doi.org/10.1175/1520-0477(1998)079<0285:QPFROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., B. A. Colle, and C. F. Mass, 2005a: The 13–14 December 2001 IMPROVE-2 event. Part I: Synoptic and mesoscale evolution and comparison with a mesoscale model simulation. J. Atmos. Sci., 62, 34743492, https://doi.org/10.1175/JAS3549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., C. P. Woods, B. A. Colle, C. F. Mass, P. V. Hobbs, M. T. Stoelinga, and J. B. Wolfe, 2005b: The 13–14 December 2001 IMPROVE-2 event. Part II: Comparisons of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62, 35203534, https://doi.org/10.1175/JAS3551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geresdi, I., 1998: Idealized simulation of the Colorado hailstorm case: Comparison of bulk and detailed microphysics. Atmos. Res., 45, 237252, https://doi.org/10.1016/S0169-8095(97)00079-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916, https://doi.org/10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., L. F. Radke, and P. V. Hobbs, 1991: Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloud-climate hypothesis. J. Geophys. Res., 96, 18 72718 733, https://doi.org/10.1029/91JD01870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and J. D. Locatelli, 1978: Rainbands, precipitation cores and generating cells in a cyclonic storm. J. Atmos. Sci., 35, 230241, https://doi.org/10.1175/1520-0469(1978)035<0230:RPCAGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and Coauthors, 1971: Studies of winter cyclonic storms over the Cascade Mountains (1970-71). Research Rep. VI, Cloud Physics Group, Atmospheric Sciences Department, University of Washington, 306 pp.

  • Hobbs, P. V., R. C. Easter, and A. B. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. Microphysics. J. Atmos. Sci., 30, 813823, https://doi.org/10.1175/1520-0469(1973)030<0813:ATSOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: Mesowest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211225, https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and A. Berne, 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor., 12, 352370, https://doi.org/10.1175/2010JHM1244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joos, H., E. Madonna, K. Witlox, S. Ferrachat, H. Wernli, and U. Lohmann, 2017: Effect of anthropogenic aerosol emissions on precipitation in warm conveyor belts in the western North Pacific in winter – A model study with ECHAM6-HAM. Atmos. Chem. Phys., 17, 62436255, https://doi.org/10.5194/acp-17-6243-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., 2009: Notes on state-of-the art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, https://doi.org/10.1088/1748-9326/4/1/015004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., V. Phillips, N. Benmoshe, and A. Pokrovsky, 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807, https://doi.org/10.1175/2011JAS3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, https://doi.org/10.1038/ngeo1313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2009: The 4–5 December 2001 IMPROVE-2 event: Observed microphysics and comparisons with the Weather Research and Forecasting Model. Mon. Wea. Rev., 137, 13721392, https://doi.org/10.1175/2008MWR2653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035, https://doi.org/10.1175/2010MWR3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., B. A. Colle, and S. E. Yuter, 2013: Impact of moisture flux and freezing level on simulated orographic precipitation errors over the Pacific Northwest. J. Hydrometeor., 14, 140152, https://doi.org/10.1175/JHM-D-12-019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. E. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., M. K. Yau, J. Mailhot, and S. Bélair, 2008: Simulation of an orographic precipitation event during IMPROVE-2. Part I: Evaluation of the control run using a triple-moment bulk microphysics scheme. Mon. Wea. Rev., 136, 38733893, https://doi.org/10.1175/2008MWR2197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., M. K. Yau, J. Mailhot, S. Bélair, and R. McTaggart-Cowan, 2010: Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Wea. Rev., 138, 625642, https://doi.org/10.1175/2009MWR3121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, G. H. Roe, and A. M. Anders, 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, https://doi.org/10.1002/qj.258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2010: An improved representation of rimed snow and conversion to graupel in a multicomponent bin microphysics scheme. J. Atmos. Sci., 67, 13371360, https://doi.org/10.1175/2010JAS3250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nugent, A. D., C. D. Watson, G. Thompson, and R. B. Smith, 2016: Aerosol impacts on thermally driven orographic convection. J. Atmos. Sci., 73, 31153132, https://doi.org/10.1175/JAS-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W.A., D. B. Wolff, J. Wang, and A. Tokay, 2017a: GPM Ground Validation Met One Rain Gauge Pairs OLYMPEX. NASA Global Hydrology Resource Center Distributed Active Archive Center, accessed 15 April 2018, https://doi.org/10.5067/GPMGV/OLYMPEX/GAUGES/DATA201.

    • Crossref
    • Export Citation
  • Petersen, W. A., A. Tokay, P. N. Gatlin, and M. T. Wingo, 2017b: GPM Ground Validation Autonomous Parsivel Unit (APU) OLYMPEX. NASA Global Hydrology Resource Center Distributed Active Archive Center, accessed 15 April 2018, https://doi.org/10.5067/GPMGV/OLYMPEX/APU/DATA301.

    • Crossref
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 1992: Winter Icing and Storms Project (WISP). Bull. Amer. Meteor. Soc., 73, 951974, https://doi.org/10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., and A. S. Dennis, 1986: A review of the Sierra Cooperative Pilot Project. Bull. Amer. Meteor. Soc., 67, 513523, https://doi.org/10.1175/1520-0477(1986)067<0513:AROTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenberg Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and Coauthors, 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc., 84, 18071826, https://doi.org/10.1175/BAMS-84-12-1807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, and V. L. McDowell, 2010: Comparison of rain gauge measurements in the mid-Atlantic region. J. Hydrometeor., 11, 553565, https://doi.org/10.1175/2009JHM1137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., B. L. Fisher, and D. B. Wolff, 2008: Estimating rain rates from tipping- bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 4356, https://doi.org/10.1175/2007JTECHA895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé, 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, https://doi.org/10.1175/MWR-D-11-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C. P., M. T. Stoelinga, and J. D. Locatelli, 2007: The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 39273948, https://doi.org/10.1175/2007JAS2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., L. A. McMurdie, and R. A. Houze, 2018: Stratiform precipitation processes in cyclones passing over a coastal mountain range. J. Atmos. Sci., 75, 983100, https://doi.org/10.1175/JAS-D-17-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, https://doi.org/10.1029/94GL01710.

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 560 262 13
PDF Downloads 377 109 5

An Evaluation of Simulated Precipitation Characteristics during OLYMPEX

Robert ConrickDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Conrick in
Current site
Google Scholar
PubMed
Close
and
Clifford F. MassDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Clifford F. Mass in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The OLYMPEX field campaign, which took place around the Olympic Mountains of Washington State during winter 2015/16, provided data for evaluating the simulated microphysics and precipitation over and near that barrier. Using OLYMPEX observations, this paper assesses precipitation and associated microphysics in the WRF-ARW model over the U.S. Pacific Northwest. Model precipitation from the University of Washington real-time WRF forecast system during the OLYMPEX field program (November 2015–February 2016) and an extended period (2008–18) showed persistent underprediction of precipitation, reaching 100 mm yr−1 over the windward side of the coastal terrain. Increasing horizontal resolution does not substantially reduce this underprediction. Evaluating surface disdrometer observations during the 2015/16 OLYMPEX winter, it was found that the operational University of Washington WRF modeling system using Thompson microphysics poorly simulated the rain drop size distribution over a windward coastal valley. Although liquid water content was represented realistically, drop diameters were overpredicted, and, consequently, the rain drop distribution intercept parameter was underpredicted. During two heavy precipitation periods, WRF realistically simulated environmental conditions, including wind speed, thermodynamic structures, integrated moisture transport, and melting levels. Several microphysical parameterization schemes were tested in addition to the Thompson scheme, with each exhibiting similar biases for these two events. We show that the parameterization of aerosols over the coastal Northwest offered only minor improvement.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert Conrick, rconrick@uw.edu

Abstract

The OLYMPEX field campaign, which took place around the Olympic Mountains of Washington State during winter 2015/16, provided data for evaluating the simulated microphysics and precipitation over and near that barrier. Using OLYMPEX observations, this paper assesses precipitation and associated microphysics in the WRF-ARW model over the U.S. Pacific Northwest. Model precipitation from the University of Washington real-time WRF forecast system during the OLYMPEX field program (November 2015–February 2016) and an extended period (2008–18) showed persistent underprediction of precipitation, reaching 100 mm yr−1 over the windward side of the coastal terrain. Increasing horizontal resolution does not substantially reduce this underprediction. Evaluating surface disdrometer observations during the 2015/16 OLYMPEX winter, it was found that the operational University of Washington WRF modeling system using Thompson microphysics poorly simulated the rain drop size distribution over a windward coastal valley. Although liquid water content was represented realistically, drop diameters were overpredicted, and, consequently, the rain drop distribution intercept parameter was underpredicted. During two heavy precipitation periods, WRF realistically simulated environmental conditions, including wind speed, thermodynamic structures, integrated moisture transport, and melting levels. Several microphysical parameterization schemes were tested in addition to the Thompson scheme, with each exhibiting similar biases for these two events. We show that the parameterization of aerosols over the coastal Northwest offered only minor improvement.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert Conrick, rconrick@uw.edu
Save