• Abatzoglou, J. T., and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western us forests. Proc. Natl. Acad. Sci. USA, 113, 11 77011 775, https://doi.org/10.1073/pnas.1607171113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and A. C. Comrie, 1997: The North American Monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arias, P. A., R. Fu, C. Vera, and M. Rojas, 2015: A correlated shortening of the North and South American monsoon seasons in the past few decades. Climate Dyn., 45, 31833203, https://doi.org/10.1007/s00382-015-2533-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, T. R., 2015: Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices. J. Climate, 28, 83638378, https://doi.org/10.1175/JCLI-D-14-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 10801083, https://doi.org/10.1126/science.1152538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breshears, D. D., and Coauthors, 2005: Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA, 102, 15 14415 148, https://doi.org/10.1073/pnas.0505734102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., T. B. McKee, and R. A. Pielke, 2001: The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J. Climate, 14, 44494473, https://doi.org/10.1175/1520-0442(2001)014<4449:TROTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., M. D. Dettinger, S. A. Kammerdiener, J. M. Caprio, and D. H. Peterson, 2001: Changes in the onset of spring in the Western United States. Bull. Amer. Meteor. Soc., 82, 399415, https://doi.org/10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and R. Seager, 2013: The response of the North American Monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, https://doi.org/10.1002/jgrd.50111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., E. R. Cook, K. J. Anchukaitis, R. Seager, and R. L. Miller, 2011: Forced and unforced variability of twentieth century North American droughts and pluvials. Climate Dyn., 37, 10971110, https://doi.org/10.1007/s00382-010-0897-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, A. Rosati, G. A. Vecchi, and A. T. Wittenberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, https://doi.org/10.1175/JCLI-D-14-00616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dore, S., and Coauthors, 2010: Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecol. Appl., 20, 663683, https://doi.org/10.1890/09-0934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudley, R. K., and S. P. Platania, 2007: Flow regulation and fragmentation imperil pelagic-spawning riverine fishes. Ecol. Appl., 17, 20742086, https://doi.org/10.1890/06-1252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. Mestas-Nunez, and P. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritze, H., I. T. Stewart, and E. Pebesma, 2011: Shifts in western North American snowmelt runoff regimes for the recent warm decades. J. Hydrometeor., 12, 9891006, https://doi.org/10.1175/2011JHM1360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, J. Lu, Y. Liu, M. Huang, and Y. Qian, 2014: Robust spring drying in the southwestern U.S. and seasonal migration of wet/dry patterns in a warmer climate. Geophys. Res. Lett., 41, 17451751, https://doi.org/10.1002/2014GL059562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guirguis, K. J., and R. Avissar, 2008: A precipitation climatology and dataset intercomparison for the western United States. J. Hydrometeor., 9, 825841, https://doi.org/10.1175/2008JHM832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, J. L., W. H. White, K. A. Gebhart, N. P. Hyslop, T. E. Gill, and B. A. Schichtel, 2016: Earlier onset of the spring fine dust season in the southwestern United States. Geophys. Res. Lett., 43, 40014009, https://doi.org/10.1002/2016GL068519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American Monsoon system. J. Climate, 14, 403417, https://doi.org/10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Chen, and A. V. Douglas, 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12, 653680, https://doi.org/10.1175/1520-0442(1999)012<0653:IVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., M. Dettinger, K. Wolter, J. Lukas, J. Eischeid, R. Nemani, B. Liebmann, and K. E. Kunkel, 2013: Present weather and climate: Evolving conditions. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment, G. Garfin et al., Eds., Island Press, 74–100.

    • Crossref
    • Export Citation
  • Huang, H.-P., R. Seager, and Y. Kushnir, 2005: The 1976/77 transition in precipitation over the Americas and the influence of tropical sea surface temperature. Climate Dyn., 24, 721740, https://doi.org/10.1007/s00382-005-0015-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huxman, T. E., and Coauthors, 2004: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254268, https://doi.org/10.1007/s00442-004-1682-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeger, K. L., J. D. Olden, and N. A. Pelland, 2014: Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl. Acad. Sci. USA, 111, 13 89413 899, https://doi.org/10.1073/pnas.1320890111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, and D. Deaven, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurc, S. A., and E. E. Small, 2007: Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland. Water Resour. Res., 43, W06416, https://doi.org/10.1029/2006WR005011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, I. R. Simpson, and L. Terray, 2018: Attributing the U.S. Southwest’s recent shift into drier conditions. Geophys. Res. Lett., 45, 62516261, https://doi.org/10.1029/2018GL078312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loik, M. E., D. D. Breshears, W. K. Lauenroth, and J. Belnap, 2004: A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia, 141, 269281, https://doi.org/10.1007/s00442-004-1570-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., J. E. Smerdon, B. I. Cook, A. P. Williams, and R. Seager, 2017: The curious case of projected twenty-first-century drying but greening in the American West. J. Climate, 30, 86898710, https://doi.org/10.1175/JCLI-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., R. Seager, J. E. Smerdon, B. I. Cook, A. P. Williams, and R. M. Horton, 2018: Blue water trade-offs with vegetation in a CO2-enriched climate. Geophys. Res. Lett., 45, 31153125, https://doi.org/10.1002/2018GL077051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., V. Lakshmi, and E. E. Small, 2005: The effects of satellite-derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. J. Climate, 18, 2140, https://doi.org/10.1175/JCLI3254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G., M. Palecki, and J. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, https://doi.org/10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, P., E. K. Heyerdahl, and C. E. Gibson, 2008: Multiseason climate synchronized forest fires throughout the 20th century, Northern Rockies, USA. Ecology, 89, 717728, https://doi.org/10.1890/06-2049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in Western North America. Bull. Amer. Meteor. Soc., 86, 3949, https://doi.org/10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., S. Li, D. P. Lettenmaier, M. Xiao, and R. Engel, 2018: Dramatic declines in snowpack in the western US. npj Climate Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-018-0012-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muldavin, E. H., D. I. Moore, S. L. Collins, K. R. Wetherill, and D. C. Lightfoot, 2008: Aboveground net primary production dynamics in a northern Chihuahuan desert ecosystem. Oecologia, 155, 123132, https://doi.org/10.1007/s00442-007-0880-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., and D. Gutzler, 2012: Simulated impact of vegetation on climate across the North American monsoon region in CCSM3.5. Climate Dyn., 38, 795814, https://doi.org/10.1007/s00382-010-0990-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., Z. Liu, R. G. Gallimore, J. W. Williams, D. S. Gutzler, and S. Collins, 2010: Complex seasonal cycle of ecohydrology in the southwest United States. J. Geophys. Res. Biogeosci., 115,G04034, https://doi.org/10.1029/2010JG001382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., W. R. Boos, S. Bordoni, T. L. Delworth, S. B. Kapnick, H. Murakami, G. A. Vecchi, and W. Zhang, 2017: Weakening of the North American monsoon with global warming. Nat. Climate Change, 7, 806812, https://doi.org/10.1038/nclimate3412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkin, J. S., and K. B. Gido, 2011: Stream fragmentation thresholds for a reproductive guild of Great Plains fishes. Fisheries, 36, 371383, https://doi.org/10.1080/03632415.2011.597666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raffa, K. F., B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A. Hicke, M. G. Turner, and W. H. Romme, 2008: Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience, 58, 501517, https://doi.org/10.1641/B580607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramesh, N., M. A. Cane, R. Seager, and D. E. Lee, 2017: Predictability and prediction of persistent cool states of the Tropical Pacific Ocean. Climate Dyn., 49, 22912307, https://doi.org/10.1007/s00382-016-3446-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., B. Rajagopalan, M. Clark, and J. Pitlick, 2005: Seasonal cycle shifts in hydroclimatology over the western United States. J. Climate, 18, 372384, https://doi.org/10.1175/JCLI-3272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, T. M., K. J. La Pierre, M. A. Vadeboncoeur, K. M. Byrne, M. L. Thomey, and S. E. Colby, 2013: Seasonal, not annual precipitation drives community productivity across ecosystems. Oikos, 122, 727738, https://doi.org/10.1111/j.1600-0706.2012.20655.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. L., G. D. Jenerette, D. L. Potts, and T. E. Huxman, 2009: Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophys. Res., 114, G04004, https://doi.org/10.1029/2008JG000900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282, https://doi.org/10.1073/pnas.0910856107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, https://doi.org/10.1175/JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Ting, I. Held, Y. Kushnir, and J. Lu, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, https://doi.org/10.1126/science.1139601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Ting, C. Li, N. Naik, B. Cook, J. Nakamura, and H. Liu, 2013a: Projections of declining surface-water availability for the southwestern United States. Nat. Climate Change, 3, 482486, https://doi.org/10.1038/nclimate1787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Ting, C. Li, N. Naik, B. Cook, J. Nakamura, and H. Liu, 2013b: Projections of declining surface-water availability for the southwestern United States. Nat. Climate Change, 3, 482486, https://doi.org/10.1038/nclimate1787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., A. Hooks, A. P. Williams, B. Cook, J. Nakamura, and N. Henderson, 2015: Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteor. Climatol., 54, 11211141, https://doi.org/10.1175/JAMC-D-14-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, E. E., 2001: The influence of soil moisture anomalies on variability of the North American Monsoon System. Geophys. Res. Lett., 28, 139142, https://doi.org/10.1029/2000GL011652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., D. Cayan, and M. D. Dettinger, 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155, https://doi.org/10.1175/JCLI3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, B. W., T. E. Kolb, S. C. Hart, J. P. Kaye, B. A. Hungate, S. Dore, and M. Montes-Helu, 2011: Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA. Biogeochemistry, 104, 251265, https://doi.org/10.1007/s10533-010-9499-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., R. Seager, C. Li, H. Liu, and N. Henderson, 2018: Mechanism of future spring drying in the southwest U.S. in CMIP5 models. J. Climate, 31, 42654279, https://doi.org/10.1175/JCLI-D-17-0574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, and E. Molly, 2004: Global inventory modeling and mapping studies (GIMMS) satellite drift corrected and NOAA-16 incorporated Normalized Difference Vegetation Index (NDVI), monthly 1981-2002. Global Land Cover Facility, University of Maryland, College Park, accessed November 2016, https://iridl.ldeo.columbia.edu/SOURCES/.UMD/.GLCF/.GIMMS/.NDVIg/.global/.dataset_documentation.html.

  • Vivoni, E. R., H. A. Moreno, G. Mascaro, J. C. Rodriguez, C. J. Watts, J. Garatuza-Payan, and R. L. Scott, 2008: Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett., 35, L22403, https://doi.org/10.1029/2008GL036001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, https://doi.org/10.1175/JAMC-D-13-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, C. J., R. L. Scott, J. Garatuza-Payan, J. C. Rodriguez, J. H. Prueger, W. P. Kustas, and M. Douglas, 2007: Changes in vegetation condition and surface fluxes during NAME 2004. J. Climate, 20, 18101820, https://doi.org/10.1175/JCLI4088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, https://doi.org/10.1126/science.1128834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2013: Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Climate Change, 3, 292297, https://doi.org/10.1038/nclimate1693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2014: Causes and implications of extreme atmospheric moisture demand during the record-breaking 2011 wildfire season in the southwestern United States. J. Appl. Meteor. Climatol., 53, 26712684, https://doi.org/10.1175/JAMC-D-14-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2015: Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire, 24, 1426, https://doi.org/10.1071/WF14023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., B. I. Cook, J. E. Smerdon, D. A. Bishop, R. Seager, and J. S. Mankin, 2017: The 2016 southeastern U.S. drought: An extreme departure from centennial wetting and cooling. J. Geophys. Res. Atmos., 122, 10 88810 905, https://doi.org/10.1002/2017JD027523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., G. T. Pederson, K. Morino, S. A. McAfee, and G. J. McCabe, 2016: Increasing influence of air temperature on upper Colorado River streamflow. Geophys. Res. Lett., 43, 21742181, https://doi.org/10.1002/2015GL067613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 417 108 13
PDF Downloads 263 58 13

Dynamics and Variability of the Spring Dry Season in the United States Southwest as Observed in AmeriFlux and NLDAS-2 Data

Madeleine Pascolini-CampbellColumbia University, New York City, New York

Search for other papers by Madeleine Pascolini-Campbell in
Current site
Google Scholar
PubMed
Close
,
Richard SeagerLamont–Doherty Earth Observatory, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
,
A. Park WilliamsLamont–Doherty Earth Observatory, Palisades, New York

Search for other papers by A. Park Williams in
Current site
Google Scholar
PubMed
Close
,
Benjamin I. CookNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Benjamin I. Cook in
Current site
Google Scholar
PubMed
Close
, and
Ariane O. PinsonAlbuquerque District, U.S. Army Corps of Engineers, Albuquerque, New Mexico

Search for other papers by Ariane O. Pinson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spring dry season occurring in an arid region of the southwestern United States, which receives both winter storm track and summer monsoon precipitation, is investigated. Bimodal precipitation and vegetation growth provide an opportunity to assess multiple climate mechanisms and their impact on hydroclimate and ecosystems. We detect multiple shifts from wet to drier conditions in the observational record and land surface model output. Focusing on the recent dry period, a shift in the late 1990s resulted in earlier and greater spring soil moisture draw down, and later and reduced spring vegetation green-up, compared to a prior wet period (1979–97). A simple soil moisture balance model shows this shift is driven by changes in winter precipitation. The recent post-1999 dry period and an earlier one from 1948 to 1966 are both related to the cool tropics phase of Pacific decadal variability, which influences winter precipitation. In agreement with other studies for the southwestern United States, we find the recent drought cannot be explained in terms of precipitation alone, but also is due to the rising influence of temperature, thus highlighting the sensitivity of this region to warming temperatures. Future changes in the spring dry season will therefore be affected by how tropical decadal variability evolves, and also by emerging trends due to human-driven warming.

Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Madeleine Pascolini-Campbell, map2251@columbia.edu

Abstract

The spring dry season occurring in an arid region of the southwestern United States, which receives both winter storm track and summer monsoon precipitation, is investigated. Bimodal precipitation and vegetation growth provide an opportunity to assess multiple climate mechanisms and their impact on hydroclimate and ecosystems. We detect multiple shifts from wet to drier conditions in the observational record and land surface model output. Focusing on the recent dry period, a shift in the late 1990s resulted in earlier and greater spring soil moisture draw down, and later and reduced spring vegetation green-up, compared to a prior wet period (1979–97). A simple soil moisture balance model shows this shift is driven by changes in winter precipitation. The recent post-1999 dry period and an earlier one from 1948 to 1966 are both related to the cool tropics phase of Pacific decadal variability, which influences winter precipitation. In agreement with other studies for the southwestern United States, we find the recent drought cannot be explained in terms of precipitation alone, but also is due to the rising influence of temperature, thus highlighting the sensitivity of this region to warming temperatures. Future changes in the spring dry season will therefore be affected by how tropical decadal variability evolves, and also by emerging trends due to human-driven warming.

Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Madeleine Pascolini-Campbell, map2251@columbia.edu
Save