• Andermann, C., S. Bonnet, and R. Gloaguen, 2011: Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst., 12, Q07023, https://doi.org/10.1029/2011GC003513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, R. G., and R. J. Chorley, 2009: Atmosphere, Weather and Climate. Routledge, 536 pp.

    • Crossref
    • Export Citation
  • Bolch, T., and Coauthors, 2012: The state and fate of Himalayan glaciers. Science, 336, 310314, https://doi.org/10.1126/science.1215828.

  • Bookhagen, B., and D. W. Burbank, 2006: Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and D. W. Burbank, 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426.

    • Search Google Scholar
    • Export Citation
  • Brun, F., E. Berthier, P. Wagnon, A. Kääb, and D. Treichler, 2017: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci., 10, 688673, https://doi.org/10.1038/ngeo2999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, F., L. M. Carvalho, C. Jones, A. Hoell, J. Norris, G. N. Kiladis, and A. A. Tahir, 2017: The influence of tropical forcing on extreme winter precipitation in the western Himalaya. Climate Dyn., 48, 12131232, https://doi.org/10.1007/s00382-016-3137-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceglar, A., A. Toreti, G. Balsamo, and S. Kobayashi, 2017: Precipitation over monsoon Asia: A comparison of reanalyses and observations. J. Climate, 30, 465476, https://doi.org/10.1175/JCLI-D-16-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, P., and Coauthors, 2017: Paprika–Preshine hydrology data sets in the Everest Region (Nepal) 2010-18. Database, https://doi.org/10.23708/000521.

    • Crossref
    • Export Citation
  • Collier, E., and W. W. Immerzeel, 2015: High-resolution modeling of atmospheric dynamics in the Nepalese Himalaya. J. Geophys. Res. Atmos., 120, 98829896, https://doi.org/10.1002/2015JD023266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eeckman, J., P. Chevallier, A. Boone, L. Neppel, A. De Rouw, F. Delclaux, and D. Koirala, 2017: Providing a non-deterministic representation of spatial variability of precipitation in the Everest region. Hydrol. Earth Syst. Sci., 21, 4879, https://doi.org/10.5194/hess-21-4879-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Førland, E., and Coauthors, 1996: Manual for operational correction of Nordic precipitation data. DNMI Rep. 24/96, 66 pp.

  • Froidurot, S., I. Zin, B. Hingray, and A. Gautheron, 2014: Sensitivity of precipitation phase over the Swiss Alps to different meteorological variables. J. Hydrometeor., 15, 685696, https://doi.org/10.1175/JHM-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardelle, J., E. Berthier, Y. Arnaud, and A. Kaab, 2013: Corrigendum to “Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011” published in The Cryosphere, 7, 1263–1286, 2013. Cryosphere, 7, 18851886, https://doi.org/10.5194/tc-7-1885-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., J. D. Lundquist, and B. Henn, 2017: Dynamical downscaling improves upon gridded precipitation products in the Sierra Nevada, California. Climate Dyn., https://doi.org/10.1007/s00382-017-3631-z

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. Van Beek, and M. F. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., F. Pellicciotti, and A. B. Shrestha, 2012: Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mt. Res. Dev., 32, 3038, https://doi.org/10.1659/MRD-JOURNAL-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W., L. Petersen, S. Ragettli, and F. Pellicciotti, 2014: The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res., 50, 22122226, https://doi.org/10.1002/2013WR014506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosch, A. H., F. S. Anslow, and G. K. Clarke, 2012: High-resolution precipitation and temperature downscaling for glacier models. Climate Dyn., 38, 391409, https://doi.org/10.1007/s00382-010-0949-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jennings, K. S., T. S. Winchell, B. Livneh, and N. P. Molotch, 2018: Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kääb, A., D. Treichler, C. Nuth, and E. Berthier, 2015: Brief communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere, 9, 557564, https://doi.org/10.5194/tc-9-557-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karki, R., S. ul Hasson, L. Gerlitz, U. Schickhoff, T. Scholten, and J. Böhner, 2017: Quantifying the added value of convection-permitting climate simulations in complex terrain: A systematic evaluation of WRF over the Himalayas. Earth Syst. Dyn., 8, 507, https://doi.org/10.5194/esd-8-507-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaser, G., M. Großhauser, and B. Marzeion, 2010: Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA, 107, 20 22320 227, https://doi.org/10.1073/pnas.1008162107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattel, D., T. Yao, K. Yang, L. Tian, G. Yang, and D. Joswiak, 2013: Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor. Appl. Climatol., 113, 671682, https://doi.org/10.1007/s00704-012-0816-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, O., D. J. Quincey, J. L. Carrivick, and A. V. Rowan, 2017: Spatial variability in mass change of glaciers in the Everest region, central Himalaya, between 2000 and 2015. Cryosphere, 11, 407426, https://doi.org/10.5194/tc-11-407-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and A. P. Barros, 2004: Winter storms in the central Himalayas. J. Meteor. Soc. Jpn. Ser. II, 82, 829844, https://doi.org/10.2151/jmsj.2004.829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’hôte, Y., P. Chevallier, A. Coudrain, Y. Lejeune, and P. Etchevers, 2005: Relationship between precipitation phase and air temperature: Comparison between the Bolivian Andes and the Swiss Alps. Hydrol. Sci. J., 50, 997, https://doi.org/10.1623/hysj.2005.50.6.989.

    • Search Google Scholar
    • Export Citation
  • Li, L., D. J. Gochis, S. Sobolowski, and M. D. Mesquita, 2017: Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model. J. Geophys. Res. Atmos., 122, 47864807, https://doi.org/10.1002/2016JD026279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDowell, G., J. D. Ford, B. Lehner, L. Berrang-Ford, and A. Sherpa, 2013: Climate-related hydrological change and human vulnerability in remote mountain regions: A case study from Khumbu, Nepal. Reg. Environ. Change, 13, 299310, https://doi.org/10.1007/s10113-012-0333-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ménégoz, M., H. Gallée, and H. Jacobi, 2013: Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol. Earth Syst. Sci., 17, 39213936, https://doi.org/10.5194/hess-17-3921-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mimeau, L., M. Esteves, I. Zin, H.-W. Jacobi, F. Brun, P. Wagnon, and Y. Arnaud, 2018: Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Nepalese Himalaya). Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-34.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I–––A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naz, B. S., C. Frans, G. Clarke, P. Burns, and D. Lettenmaier, 2014: Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrol. Earth Syst. Sci., 18, 787802, https://doi.org/10.5194/hess-18-787-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuimura, T., and Coauthors, 2015: The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers. Cryosphere, 9, 849864, https://doi.org/10.5194/tc-9-849-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palazzi, E., J. Hardenberg, and A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, https://doi.org/10.1029/2012JD018697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., 2017: Asia’s glaciers are a regionally important buffer against drought. Nature, 545, 169174, https://doi.org/10.1038/nature22062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragettli, S., and Coauthors, 2015: Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv. Water Resour., 78, 94111, https://doi.org/10.1016/j.advwatres.2015.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salerno, F., and Coauthors, 2015: Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere, 9, 12291247, https://doi.org/10.5194/tc-9-1229-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savéan, M., F. Delclaux, P. Chevallier, P. Wagnon, N. Gonga-Saholiariliva, R. Sharma, L. Neppel, and Y. Arnaud, 2015: Water budget on the Dudh Koshi River (Nepal): uncertainties on precipitation. J. Hydrol., 531, 850862, https://doi.org/10.1016/j.jhydrol.2015.10.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherler, D., B. Bookhagen, and M. R. Strecker, 2011: Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci., 4, 156159, https://doi.org/10.1038/ngeo1068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, J., W. Immerzeel, P. Wagnon, C. Vincent, and S. Bajracharya, 2015: Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere, 9, 11051128, https://doi.org/10.5194/tc-9-1105-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, A. B., and R. Aryal, 2011: Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Change, 11, 6577, https://doi.org/10.1007/s10113-010-0174-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, S., R. Kumar, A. Bhardwaj, L. Sam, M. Shekhar, A. Singh, R. Kumar, and A. Gupta, 2016: Changing climate and glacio-hydrology in Indian Himalayan region: A review. Wiley Interdiscip. Rev.: Climate Change, 7, 393410, https://doi.org/10.1002/wcc.393.

    • Search Google Scholar
    • Export Citation
  • Sirguey, P., R. Mathieu, and Y. Arnaud, 2009: Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ., 113, 160181, https://doi.org/10.1016/j.rse.2008.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soncini, A., and Coauthors, 2016: Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin. Sci. Total Environ., 565, 10841101, https://doi.org/10.1016/j.scitotenv.2016.05.138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. Rasmussen, K. Ikeda, and S. Landolt, 2012: Dependence of snow gauge collection efficiency on snowflake characteristics. J. Appl. Meteor. Climatol., 51, 745762, https://doi.org/10.1175/JAMC-D-11-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner, 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, https://doi.org/10.1029/2006WR005653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagnon, P., and Coauthors, 2013: Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere, 7, 17691786, https://doi.org/10.5194/tc-7-1769-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer, 845 pp.

  • Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier, 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679, https://doi.org/10.1029/94WR00436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, M., K. Isaksen, A. Petersen-Øverleir, K. Ødemark, T. Reitan, and R. Brækkan, 2015: Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: Results of a Norwegian field study. Hydrol. Earth Syst. Sci., 19, 951967, https://doi.org/10.5194/hess-19-951-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 385 105 26
PDF Downloads 352 99 7

Evaluation of Gridded and In Situ Precipitation Datasets on Modeled Glacio-Hydrologic Response of a Small Glacierized Himalayan Catchment

Louise MimeauInstitute for Geosciences and Environmental Research, University of Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France

Search for other papers by Louise Mimeau in
Current site
Google Scholar
PubMed
Close
,
Michel EstevesInstitute for Geosciences and Environmental Research, University of Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France

Search for other papers by Michel Esteves in
Current site
Google Scholar
PubMed
Close
,
Hans-Werner JacobiInstitute for Geosciences and Environmental Research, University of Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France

Search for other papers by Hans-Werner Jacobi in
Current site
Google Scholar
PubMed
Close
, and
Isabella ZinInstitute for Geosciences and Environmental Research, University of Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France

Search for other papers by Isabella Zin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reliable precipitation data in the Himalayas are essential for the study of the water resources, the evolution of glaciers, and the present and future climate. Although several types of precipitation datasets are available for the Himalayan region, all of them have limitations, which hamper the quantification of the precipitation fluxes at high elevations. This study compares different types of precipitation datasets issued from (i) in situ data, (ii) satellite-based data [TRMM, Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS)], and (iii) a reanalysis product [High Asia Refined analysis (HAR)] for a small headwater catchment at high elevations (Upper Dudh Koshi, Nepal) and assesses the impact of the precipitation uncertainty on the result of the modeling of the glacio-hydrological system. During the analyzed period from 2010 to 2015, large differences between the precipitation datasets occur regarding annual amounts (ranging from 410 to 1190 mm yr−1) as well as in seasonal and diurnal cycles. The simulations with the glacio-hydrological model Distributed Hydrological Soil Vegetation Model–Glaciers Dynamics Model (DHSVM-GDM) show that the choice of a given precipitation dataset greatly impacts the simulated snow cover dynamics and glacier mass balances as well as the annual, seasonal, and diurnal streamflows. Due to the uncertainty in the precipitation, the simulated contribution of the ice melt to the annual outflow also remains uncertain and simulated fractions range from 29% to 76% for the 2012–13 glaciological year.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michel Esteves, michel.esteves@ird.fr

Abstract

Reliable precipitation data in the Himalayas are essential for the study of the water resources, the evolution of glaciers, and the present and future climate. Although several types of precipitation datasets are available for the Himalayan region, all of them have limitations, which hamper the quantification of the precipitation fluxes at high elevations. This study compares different types of precipitation datasets issued from (i) in situ data, (ii) satellite-based data [TRMM, Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS)], and (iii) a reanalysis product [High Asia Refined analysis (HAR)] for a small headwater catchment at high elevations (Upper Dudh Koshi, Nepal) and assesses the impact of the precipitation uncertainty on the result of the modeling of the glacio-hydrological system. During the analyzed period from 2010 to 2015, large differences between the precipitation datasets occur regarding annual amounts (ranging from 410 to 1190 mm yr−1) as well as in seasonal and diurnal cycles. The simulations with the glacio-hydrological model Distributed Hydrological Soil Vegetation Model–Glaciers Dynamics Model (DHSVM-GDM) show that the choice of a given precipitation dataset greatly impacts the simulated snow cover dynamics and glacier mass balances as well as the annual, seasonal, and diurnal streamflows. Due to the uncertainty in the precipitation, the simulated contribution of the ice melt to the annual outflow also remains uncertain and simulated fractions range from 29% to 76% for the 2012–13 glaciological year.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michel Esteves, michel.esteves@ird.fr
Save