• Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 13771396, https://doi.org/10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai, 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, https://doi.org/10.1029/2010JD014741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., and Coauthors, 2015: PERSIANN-CDR daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6984, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bach, L., C. Schraff, J. D. Keller, and A. Hense, 2016: Towards a probabilistic regional reanalysis system for Europe: evaluation of precipitation from experiments. Tellus, 68A, 32209, https://doi.org/10.3402/tellusa.v68.32209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollmeyer, C., and Coauthors, 2015: Towards a high-resolution regional reanalysis for the European CORDEX domain. Quart. J. Roy. Meteor. Soc., 141, 115, https://doi.org/10.1002/qj.2486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, M. J., 2002: Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge. Hydrol. Sci. J., 47, 307320, https://doi.org/10.1080/02626660209492932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brdar, S., M. Baldauf, A. Dedner, and R. Klöfkorn, 2013: Comparison of dynamical cores for NWP models: Comparison of COSMO and Dune. Theor. Comput. Fluid Dyn., 27, 453472, https://doi.org/10.1007/s00162-012-0264-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brienen, S., A. Kapala, H. Machel, and C. Simmer, 2013: Regional centennial precipitation variability over Germany from extended observation records. Int. J. Climatol., 33, 21672184, https://doi.org/10.1002/joc.3581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Collins, M., and Coauthors, 2018: Challenges and opportunities for improved understanding of regional climate dynamics. Nat. Climate Change, 8, 101108, https://doi.org/10.1038/s41558-017-0059-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., C. Doutriaux, P. J. Gleckler, K. E. Taylor, K. E. Trenberth, and Y. Zhang, 2018: High-frequency intermittency in observed and model-simulated precipitation. Geophys. Res. Lett., 45, 12 51412 522, https://doi.org/10.1029/2018GL078926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahlgren, P., and N. Gustafsson, 2012: Assimilating host model information into a limited area model. Tellus, 64A, 15 836, https://doi.org/10.3402/tellusa.v64i0.15836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahlgren, P., T. Landelius, P. Kållberg, and S. Gollvik, 2016: A high-resolution regional reanalysis for Europe. Part 1: Three-dimensional reanalysis with the regional High-Resolution Limited-Area Model (HIRLAM). Quart. J. Roy. Meteor. Soc., 142, 21192131, https://doi.org/10.1002/qj.2807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework. Meteor. Appl., 15, 5164, https://doi.org/10.1002/met.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, https://doi.org/10.1175/BAMS-88-1-47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gehne, M., T. M. Hamill, G. N. Kiladis, and K. E. Trenberth, 2016: Comparison of global precipitation estimates across a range of temporal and spatial scales. J. Climate, 29, 77737795, https://doi.org/10.1175/JCLI-D-15-0618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghelli, A., and F. Lalaurette, 2000: Verifying precipitation forecasts using upscaled observations. ECMWF Newsletter, No. 87, ECMWF, Reading, United Kingdom, 9–17.

  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. A. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, https://doi.org/10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., M. J. Rodwell, D. S. Richardson, A. Okagaki, T. Robinson, and T. Hewson, 2012: Intercomparison of global model precipitation forecast skill in 2010/11 using the SEEPS score. Mon. Wea. Rev., 140, 27202733, https://doi.org/10.1175/MWR-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatfield, J. L., J. H. Prueger, and D. W. Meek, 1999: Spatial variation of rainfall over a large watershed in central Iowa. Theor. Appl. Climatol., 64, 4960, https://doi.org/10.1007/s007040050110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofstra, N., M. New, and C. McSweeney, 2010: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dyn., 35, 841858, https://doi.org/10.1007/s00382-009-0698-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isotta, F. A., R. Vogel, and C. Frei, 2015: Evaluation of European regional reanalysis and downscalings for precipitation in the Alpine region. Meteor. Z., 24, 1537, https://doi.org/10.1127/metz/2014/0584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high-resolution regional climate model. J. Climate, 25, 57915806, https://doi.org/10.1175/JCLI-D-11-00562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., 2001: Satellite rainfall climatology: A review. Int. J. Climatol., 21, 10411066, https://doi.org/10.1002/joc.635.

  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, https://doi.org/10.5194/hess-15-1109-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., P. Bauer, J. Turk, G. J. Huffman, R. Joyce, K. L. Hsu, and D. Braithwaite, 2012: Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 6783, https://doi.org/10.1175/JHM-D-11-042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 36653680, https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knist, S., K. Goergen, and C. Simmer, 2019: Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe. Climate Dyn., https://doi.org/10.1007/s00382-018-4147-x, in press.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Koppen-Geiger climate classification updated. Meteor. Z., 15, 259263, https://doi.org/10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111–127, https://doi.org/10.1002/joc.3370100202.

    • Crossref
    • Export Citation
  • Lockhoff, M., O. Zolina, C. Simmer, and J. Schulz, 2014: Evaluation of Satellite-retrieved extreme precipitation over Europe using gauge observations. J. Climate, 27, 607623, https://doi.org/10.1175/JCLI-D-13-00194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., and M. Hulme, 1997: Development of a relationship between station and grid-box rainday frequencies for climate model evaluation. J. Climate, 10, 18851908, https://doi.org/10.1175/1520-0442(1997)010<1885:DOARBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: The status of satellite-based rainfall estimation over land. Remote Sens. Environ., 51, 125137, https://doi.org/10.1016/0034-4257(94)00070-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Povey, A. C., and R. G. Grainger, 2015: Known and unknown unknowns: uncertainty estimation in satellite remote sensing. Atmos. Meas. Tech., 8, 46994718, https://doi.org/10.5194/amt-8-4699-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and A. Gobiet, 2017: Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol., 37, 305327, https://doi.org/10.1002/joc.4706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., E. Coppola, C. Piani, and F. Giorgi, 2010: Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Climate Dyn., 35, 685711, https://doi.org/10.1007/s00382-009-0607-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, https://doi.org/10.1175/2008JHM1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Simmer, C., and Coauthors, 2016: HErZ: The German Hans-Ertel Centre for Weather Research. Bull. Amer. Meteor. Soc., 97, 10571068, https://doi.org/10.1175/BAMS-D-13-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang, 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness-temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31, 506531, https://doi.org/10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., and E. N. Anagnostou, 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor., 13, 588603, https://doi.org/10.1175/JHM-D-11-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Mesogamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596, https://doi.org/10.1007/s00703-001-0592-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, https://doi.org/10.1175/JCLI3672.1.

  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, and M. Gehne, 2017: Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. J. Hydrometeor., 18, 13931412, https://doi.org/10.1175/JHM-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., P. Arkin, E. E. Ebert, and M. R. P. Sapiano, 2008: Evaluating high-resolution precipitation products. Bull. Amer. Meteor. Soc., 89, 19111916, https://doi.org/10.1175/2008BAMS2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, S., C. Bollmeyer, S. Crewell, C. Figura, P. Friederichs, A. Hense, J. Keller, and C. Ohlwein, 2017: A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation. Meteor. Z., 26, https://doi.org/10.1127/metz/2017/0824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Zeng, X.-M., M. Wang, Y. Zhang, Y. Wang, and Y. Zheng, 2016: Assessing the effects of spatial resolution on regional climate model simulated summer temperature and precipitation in China: A case study. Adv. Meteor., 2016, https://doi.org/10.1155/2016/7639567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., A. Kapala, C. Simmer, and S. K. Gulev, 2004: Analysis of extreme precipitation over Europe from different reanalysis: A comparative assessment. Global Planet. Change, 44, 129161, https://doi.org/10.1016/j.gloplacha.2004.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., C. Simmer, A. Kapala, and S. K. Gulev, 2005: On the robustness of the estimates of centennial-scale variability in heavy precipitation from station data over Europe. Geophys. Res. Lett., 32, L14707, https://doi.org/10.1029/2005GL023231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., C. Simmer, K. Belyaev, A. Kapala, and S. Gulev, 2009: Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J. Hydrometeor., 10, 701716, https://doi.org/10.1175/2008JHM1055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., C. Simmer, S. K. Gulev, and S. Kollet, 2010: Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett., 37, L06704, https://doi.org/10.1029/2010GL042468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., C. Simmer, K. P. Belyaev, S. K. Gulev, and K. P. Koltermann, 2013: Changes in European wet and dry spells over the last decades. J. Climate, 26, 20222047, https://doi.org/10.1175/JCLI-D-11-00498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., C. Simmer, A. Kapala, P. Shabanov, P. Becker, H. Mächel, S. Gulev, and P. Groisman, 2014: Precipitation variability and extremes in central Europe: New view from STAMMEX results. Bull. Amer. Meteor. Soc., 95, 9951002, https://doi.org/10.1175/BAMS-D-12-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 518 157 10
PDF Downloads 310 109 7

Representation of Precipitation Characteristics and Extremes in Regional Reanalyses and Satellite- and Gauge-Based Estimates over Western and Central Europe

M. LockhoffDeutscher Wetterdienst, Offenbach, Germany

Search for other papers by M. Lockhoff in
Current site
Google Scholar
PubMed
Close
,
O. ZolinaInstitut des Géosciences de l’Environnement, Grenoble, France, and P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

Search for other papers by O. Zolina in
Current site
Google Scholar
PubMed
Close
,
C. SimmerMeteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by C. Simmer in
Current site
Google Scholar
PubMed
Close
, and
J. SchulzEuropean Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Darmstadt, Germany

Search for other papers by J. Schulz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper evaluates several daily precipitation products over western and central Europe, identifies and documents their respective strengths and shortcomings, and relates these to uncertainties associated with each of the products. We analyze one gauge-based, three satellite-based, and two reanalysis-based products using high-density rain gauge observations as reference. First, we assess spatial patterns and frequency distributions using aggregated statistics. Then, we determine the skill of precipitation event detection from these products with a focus on extremes, using temporally and spatially matched pairs of precipitation estimates. The results show that the quality of the datasets largely depends on the region, season, and precipitation characteristic addressed. The satellite and the reanalysis precipitation products are found to have difficulties in accurately representing precipitation frequency with local overestimations of more than 40%, which occur mostly in dry regions (all products) as well as along coastlines and over cold/frozen surfaces (satellite-based products). The frequency distributions of wet-day intensities are generally well reproduced by all products. Concerning the frequency distributions of wet-spell durations, the satellite-based products are found to have clear deficiencies for maritime-influenced precipitation regimes. Moreover, the analysis of the detection of extreme precipitation events reveals that none of the non-station-based datasets shows skill at the shortest temporal and spatial scales (1 day, 0.25°), but at and above the 3-day and 1.25° scale the products start to exhibit skill over large parts of the domain. Added value compared to coarser-resolution global benchmark products is found both for reanalysis and satellite-based products.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Lockhoff, maarit.lockhoff@dwd.de

Abstract

This paper evaluates several daily precipitation products over western and central Europe, identifies and documents their respective strengths and shortcomings, and relates these to uncertainties associated with each of the products. We analyze one gauge-based, three satellite-based, and two reanalysis-based products using high-density rain gauge observations as reference. First, we assess spatial patterns and frequency distributions using aggregated statistics. Then, we determine the skill of precipitation event detection from these products with a focus on extremes, using temporally and spatially matched pairs of precipitation estimates. The results show that the quality of the datasets largely depends on the region, season, and precipitation characteristic addressed. The satellite and the reanalysis precipitation products are found to have difficulties in accurately representing precipitation frequency with local overestimations of more than 40%, which occur mostly in dry regions (all products) as well as along coastlines and over cold/frozen surfaces (satellite-based products). The frequency distributions of wet-day intensities are generally well reproduced by all products. Concerning the frequency distributions of wet-spell durations, the satellite-based products are found to have clear deficiencies for maritime-influenced precipitation regimes. Moreover, the analysis of the detection of extreme precipitation events reveals that none of the non-station-based datasets shows skill at the shortest temporal and spatial scales (1 day, 0.25°), but at and above the 3-day and 1.25° scale the products start to exhibit skill over large parts of the domain. Added value compared to coarser-resolution global benchmark products is found both for reanalysis and satellite-based products.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Lockhoff, maarit.lockhoff@dwd.de
Save