• Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., and Coauthors, 2011: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci., 15, 223239, https://doi.org/10.5194/hess-15-223-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., B. R. Lintner, K. L. Findell, S. Malyshev, P. C. Loikith, and P. Gentine, 2014: Impact of soil moisture-atmosphere interactions on surface temperature distribution. J. Climate, 27, 79767993, https://doi.org/10.1175/JCLI-D-13-00591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 139 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Buchinsky, I. E., 1976: Droughts and Dry Winds (in Russian). Gidrometeoizdat, 214 pp.

  • CCSP, 2008: Reanalysis of historical climate data for key atmospheric features: Implications for attribution of causes of observed change. U.S. Climate Change Science Program Synthesis and Assessment Product 1.3, 136 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., R. D. Koster, and Z. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, https://doi.org/10.1175/JHM532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., R. H. Reichle, and R. D. Koster, 2018: Assessment of MERRA-2 land surface energy flux estimates. J. Climate, 31, 671691, https://doi.org/10.1175/JCLI-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978: Climate, soil, and vegetation: 4. The expected value of annual evapotranspiration. Water Resour. Res., 14, 731739, https://doi.org/10.1029/WR014i005p00731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and C. F. Labosier, 2017: Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteor., 247, 414423, https://doi.org/10.1016/j.agrformet.2017.08.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., A. Wood, D. J. McEvoy, J. L. Huntington, C. Morton, M. Anderson, and C. Hain, 2016: The evaporative demand drought index, Part 1, Linking drought evolution to variations in evaporative demand. J. Hydrometeor., 17, 17451761, https://doi.org/10.1175/JHM-D-15-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666687, https://doi.org/10.1109/JPROC.2010.2043032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and S. P. P. Mahanama, 2012: Land surface controls on hydroclimatic means and variability. J. Hydrometeor., 13, 16041620, https://doi.org/10.1175/JHM-D-12-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Z. Guo, R. Yang, P. A. Dirmeyer, K. Mitchell, and M. J. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, https://doi.org/10.1175/2009JCLI2832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., L. Brocca, W. T. Crow, M. S. Burgin, and G. J. De Lannoy, 2016: Precipitation estimation using L-band and C-band soil moisture retrievals. Water Resour. Res., 52, 72137225, https://doi.org/10.1002/2016WR019024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legler, D., and A. Pirani, 2009: WCRP Drought Interest Group (DIG) coordinates drought research for better prediction of regional drought. CLIVAR Exchanges, No. 51, International CLIVAR Project Office, Southampton, United Kingdom, 4–5.

  • Lydolph, P. E., 1964: The Russian Sukhovey. Ann. Assoc. Amer. Geogr., 54, 291309, https://doi.org/10.1111/j.1467-8306.1964.tb00490.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the Earth’s surface. Mon. Wea. Rev., 97, 739774, https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., S. Schubert, K. Mo, C. Peters-Lidard, A. Wood, R. Pulwarty, J. Huang, and D. Barrie, 2013: Advancing drought understanding, monitoring, and prediction. Bull. Amer. Meteor. Soc., 94, ES186ES188, https://doi.org/10.1175/BAMS-D-12-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W., L. Coy, R. Gelaro, A. Huang, D. Merkova, E. B. Smith, M. Seinkiewicz, and K. Wargan, 2016: MERRA-2 input observations: Summary and assessment. NASA/TM-2016-104606, Vol. 46, 51 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160014544.pdf.

  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2016: Precipitation deficit flash droughts over the United States. J. Hydrometeor., 17, 11691184, https://doi.org/10.1175/JHM-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013: Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeor., 14, 10571074, https://doi.org/10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018: Flash droughts, A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Amer. Meteor. Soc., 99, 911919, https://doi.org/10.1175/BAMS-D-17-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2016: The MERRA-2 Aerosol Assimilation. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2016-104606, Vol. 45, 140 pp.

  • Reichle, R. H., and Coauthors, 2017a: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., C. S. Draper, Q. Liu, M. Girotto, S. P. P. Mahanama, R. D. Koster, and G. J. M. De Lannoy, 2017b: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30, 29372960, https://doi.org/10.1175/JCLI-D-16-0720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA, NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., 2001: Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation. Water Resour. Res., 37, 13571365, https://doi.org/10.1029/2000WR900336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, R. Koster, M. Suarez, and P. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2016: Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J. Climate, 29, 39894019, https://doi.org/10.1175/JCLI-D-15-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwingshackl, C., M. Hirschi, and S. I. Seneviratne, 2018: A theoretical approach to asess soil moisture-climate coupling across CMIP5 and GLACE-CMIP5 experiments. Earth Syst. Dyn., 9, 12171234, https://doi.org/10.5194/esd-9-1217-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinor, D., Ed., 1990: The Cambridge History of Early Inner Asia. Cambridge University Press, 518 pp.

    • Crossref
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., S. D. Schubert, A. W. Wood, C. D. Peters-Lidard, K. C. Mo, A. Mariotti, and R. S. Pulwarty, 2015: Prospects for advancing drought understanding, monitoring, and prediction. J. Hydrometeor., 16, 16361657, https://doi.org/10.1175/JHM-D-14-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1522 742 96
PDF Downloads 1544 704 108

Flash Drought as Captured by Reanalysis Data: Disentangling the Contributions of Precipitation Deficit and Excess Evapotranspiration

R. D. KosterGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by R. D. Koster in
Current site
Google Scholar
PubMed
Close
,
S. D. SchubertGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by S. D. Schubert in
Current site
Google Scholar
PubMed
Close
,
H. WangScience Systems and Applications, Inc., Lanham, Maryland

Search for other papers by H. Wang in
Current site
Google Scholar
PubMed
Close
,
S. P. MahanamaGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by S. P. Mahanama in
Current site
Google Scholar
PubMed
Close
, and
Anthony M. DeAngelisScience Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Anthony M. DeAngelis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Flash droughts—uncharacteristically rapid dryings of the land system—are naturally associated with extreme precipitation deficits. Such precipitation deficits, however, do not tell the whole story, for land surface drying can be exacerbated by anomalously high evapotranspiration (ET) rates driven by anomalously high temperatures (e.g., during heat waves), anomalously high incoming radiation (e.g., from reduced cloudiness), and other meteorological anomalies. In this study, the relative contributions of precipitation and ET anomalies to flash drought generation in the Northern Hemisphere are quantified through the analysis of diagnostic fields contained within the MERRA-2 reanalysis product. Unique to the approach is the explicit treatment of soil moisture impacts on ET through relationships diagnosed from the reanalysis data; under this treatment, an ET anomaly that is negative relative to the local long-term climatological mean is still considered positive in terms of its contribution to a flash drought if it is high for the concurrent value of soil moisture. Maps produced in the analysis show the fraction of flash drought production stemming specifically from ET anomalies and illustrate how ET anomalies for some droughts are related to temperature and radiation anomalies. While ET is found to have an important impact on flash drought production in the central United States and in parts of Russia known from past studies to be prone to heat wave–related drought, and while this impact does appear stronger during the onset (first several days) of flash droughts, overall the contribution of ET to these droughts is small relative to the contribution of precipitation deficit.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Randal Koster, randal.d.koster@nasa.gov

Abstract

Flash droughts—uncharacteristically rapid dryings of the land system—are naturally associated with extreme precipitation deficits. Such precipitation deficits, however, do not tell the whole story, for land surface drying can be exacerbated by anomalously high evapotranspiration (ET) rates driven by anomalously high temperatures (e.g., during heat waves), anomalously high incoming radiation (e.g., from reduced cloudiness), and other meteorological anomalies. In this study, the relative contributions of precipitation and ET anomalies to flash drought generation in the Northern Hemisphere are quantified through the analysis of diagnostic fields contained within the MERRA-2 reanalysis product. Unique to the approach is the explicit treatment of soil moisture impacts on ET through relationships diagnosed from the reanalysis data; under this treatment, an ET anomaly that is negative relative to the local long-term climatological mean is still considered positive in terms of its contribution to a flash drought if it is high for the concurrent value of soil moisture. Maps produced in the analysis show the fraction of flash drought production stemming specifically from ET anomalies and illustrate how ET anomalies for some droughts are related to temperature and radiation anomalies. While ET is found to have an important impact on flash drought production in the central United States and in parts of Russia known from past studies to be prone to heat wave–related drought, and while this impact does appear stronger during the onset (first several days) of flash droughts, overall the contribution of ET to these droughts is small relative to the contribution of precipitation deficit.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Randal Koster, randal.d.koster@nasa.gov
Save