Spatially Continuous Characterization of Forest Canopy Structure and Subcanopy Irradiance Derived from Handheld Radiometer Surveys

Giulia Mazzotti WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, and Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Zurich, Switzerland

Search for other papers by Giulia Mazzotti in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3857-7449
,
Johanna Malle Department of Geography, Northumbria University, Newcastle, United Kingdom, and WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland

Search for other papers by Johanna Malle in
Current site
Google Scholar
PubMed
Close
,
Sarah Barr WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland

Search for other papers by Sarah Barr in
Current site
Google Scholar
PubMed
Close
, and
Tobias Jonas WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland

Search for other papers by Tobias Jonas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Small-scale variations in radiative transfer through forest canopies are strongly linked to canopy structural heterogeneity. To date, upscaling of radiative transfer parameterizations developed at the point scale is hampered by (i) poor representation of canopy structure variability and (ii) limited spatially explicit subcanopy irradiance data to assess the performance of radiative transfer schemes at typical resolutions of land surface models. This study presents a novel approach for efficient in situ characterization of canopy structure and subcanopy irradiance over large spatial extents. The method involves a handheld radiometer assembly mounted on a motorized gimbal developed for nonstationary continuous measurements of shortwave and longwave radiation along forest transects. In combination with radiation and temperature data from a stationary reference station, spatially resolved estimates of sky-view fraction, canopy transmissivity, and longwave enhancement could be obtained. Under favorable meteorological conditions, validation against sky-view fraction data from hemispherical photographs yielded an RMSE of 0.03 (i.e., 3%). Irradiance measurements under heterogeneous canopy cover revealed strong spatial coherence between longwave radiation enhancement, shortwave radiation attenuation, and sky-view fraction on overcast days. Under clear-sky conditions, however, sun flecks caused highly variable shortwave radiation transmissivity patterns. This study demonstrates the potential of handheld radiometer surveys to deliver valuable spatially distributed datasets of collocated canopy structure and subcanopy irradiance which can be used (i) as reference data for alternative approaches to derive canopy structure parameters, (ii) to improve modeling of subcanopy radiation across a wide range of canopy distributions, and (iii) to support respective model upscaling efforts.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0158.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: G. Mazzotti, giulia.mazzotti@slf.ch

Abstract

Small-scale variations in radiative transfer through forest canopies are strongly linked to canopy structural heterogeneity. To date, upscaling of radiative transfer parameterizations developed at the point scale is hampered by (i) poor representation of canopy structure variability and (ii) limited spatially explicit subcanopy irradiance data to assess the performance of radiative transfer schemes at typical resolutions of land surface models. This study presents a novel approach for efficient in situ characterization of canopy structure and subcanopy irradiance over large spatial extents. The method involves a handheld radiometer assembly mounted on a motorized gimbal developed for nonstationary continuous measurements of shortwave and longwave radiation along forest transects. In combination with radiation and temperature data from a stationary reference station, spatially resolved estimates of sky-view fraction, canopy transmissivity, and longwave enhancement could be obtained. Under favorable meteorological conditions, validation against sky-view fraction data from hemispherical photographs yielded an RMSE of 0.03 (i.e., 3%). Irradiance measurements under heterogeneous canopy cover revealed strong spatial coherence between longwave radiation enhancement, shortwave radiation attenuation, and sky-view fraction on overcast days. Under clear-sky conditions, however, sun flecks caused highly variable shortwave radiation transmissivity patterns. This study demonstrates the potential of handheld radiometer surveys to deliver valuable spatially distributed datasets of collocated canopy structure and subcanopy irradiance which can be used (i) as reference data for alternative approaches to derive canopy structure parameters, (ii) to improve modeling of subcanopy radiation across a wide range of canopy distributions, and (iii) to support respective model upscaling efforts.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0158.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: G. Mazzotti, giulia.mazzotti@slf.ch

Supplementary Materials

    • Supplemental Materials (PDF 884.92 KB)
Save
  • Battaglia, M. A., P. Mou, B. Palik, and R. J. Mitchell, 2002: The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest. Can. J. For. Res., 32, 19841991, https://doi.org/10.1139/x02-087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckschäfer, P., D. Seidel, C. Kleinn, and J. Xu, 2013: On the exposure of hemispherical photographs in forests. iForest Biogeosci. For., 6, 228–237, https://doi.org/10.3832/ifor0957-006.

    • Crossref
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogren, W. S., J. F. Burkhart, and A. Kylling, 2016: Tilt error in cryospheric surface radiation measurements at high latitudes: A model study. Cryosphere, 10, 613622, https://doi.org/10.5194/tc-10-613-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., E. G. Patton, I. N. Harman, K. W. Oleson, J. J. Finnigan, Y. Lu, and E. A. Burakowski, 2018: Modeling canopy-induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci. Model Dev., 11, 14671496, https://doi.org/10.5194/gmd-11-1467-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., P. Samuelsson, S. Gollvik, A. Napoly, L. Jarlan, E. Brun, and B. Decharme, 2017: The interactions between soil–biosphere–atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 – Part 1: Model description. Geosci. Model Dev., 10, 843872, https://doi.org/10.5194/gmd-10-843-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., A. A. Harpold, J. A. Biederman, P. A. Troch, N. P. Molotch, and P. D. Brooks, 2015: Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests. Ecohydrology, 8, 10731094, https://doi.org/10.1002/eco.1565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. M., P. D. Blanken, T. A. Black, M. Guilbeault, and S. Chen, 1997: Radiation regime and canopy architecture in a boreal aspen forest. Agric. For. Meteor., 86, 107125, https://doi.org/10.1016/S0168-1923(96)02402-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., J. Pomeroy, C. Ellis, and T. Link, 2008a: Modelling longwave radiation to snow beneath forest canopies using hemispherical photography or linear regression. Hydrol. Processes, 22, 27882800, https://doi.org/10.1002/hyp.6930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and Coauthors, 2008b: Radiative transfer modeling of a coniferous canopy characterized by airborne remote sensing. J. Hydrometeor., 9, 228241, https://doi.org/10.1175/2007JHM870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and Coauthors, 2009: SNOWMIP2: An evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc., 90, 11201135, https://doi.org/10.1175/2009BAMS2629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friesen, J., J. Lundquist, and J. T. Van Stan, 2015: Evolution of forest precipitation water storage measurement methods. Hydrol. Processes, 29, 25042520, https://doi.org/10.1002/hyp.10376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginzler, C., and M. Hobi, 2015: Countrywide stereo-image matching for updating digital surface models in the framework of the Swiss national forest inventory. Remote Sens., 7, 43434370, https://doi.org/10.3390/rs70404343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glatthorn, J., and P. Beckschafer, 2014: Standardizing the protocol for hemispherical photographs: accuracy assessment of binarization algorithms. PLOS ONE, 9, e111924, https://doi.org/10.1371/journal.pone.0111924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, A. N., T. A. Spies, and M. J. Easter, 2002: Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can. J. For. Res., 32, 332343, https://doi.org/10.1139/x01-200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hancock, S., R. Essery, T. Reid, J. Carle, R. Baxter, N. Rutter, and B. Huntley, 2014: Characterising forest gap fraction with terrestrial lidar and photography: An examination of relative limitations. Agric. For. Meteor., 189-190, 105114, https://doi.org/10.1016/j.agrformet.2014.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, J. P., R. Melloh, G. Koenig, D. Marks, A. Winstral, J. W. Pomeroy, and T. Link, 2004: Solar radiation transmission through conifer canopies. Agric. For. Meteor., 126, 257270, https://doi.org/10.1016/j.agrformet.2004.06.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishida, M., 2004: Automatic thresholding for digital hemispherical photography. Can. J. For. Res., 34, 22082216, https://doi.org/10.1139/x04-103.

  • Jonckheere, I., S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss, and F. Baret, 2004: Review of methods for in situ leaf area index determination. Agric. For. Meteor., 121, 1935, https://doi.org/10.1016/j.agrformet.2003.08.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonckheere, I., K. Nackaerts, B. Muys, and P. Coppin, 2005: Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agric. For. Meteor., 132, 96114, https://doi.org/10.1016/j.agrformet.2005.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jupp, D. L., D. S. Culvenor, J. L. Lovell, G. J. Newnham, A. H. Strahler, and C. E. Woodcock, 2009: Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna’. Tree Physiol., 29, 171181, https://doi.org/10.1093/treephys/tpn022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khosravipour, A., A. K. Skidmore, M. Isenburg, T. Wang, and Y. A. Hussin, 2014: Generating pit-free canopy height models from airborne lidar. Photogramm. Eng. Remote Sensing, 80, 863872, https://doi.org/10.14358/PERS.80.9.863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klos, P. Z., and T. E. Link, 2018: Quantifying shortwave and longwave radiation inputs to headwater streams under differing canopy structures. For. Ecol. Manage., 407, 116124, https://doi.org/10.1016/j.foreco.2017.10.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawler, R. R., and T. E. Link, 2011: Quantification of incoming all-wave radiation in discontinuous forest canopies with application to snowmelt prediction. Hydrol. Processes, 25, 33223331, https://doi.org/10.1002/hyp.8150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Link, T. E., and D. Marks, 1999: Point simulation of seasonal snow cover dynamics beneath boreal forest canopies. J. Geophys. Res., 104, 27 84127 857, https://doi.org/10.1029/1998JD200121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Link, T. E., D. Marks, and J. P. Hardy, 2004: A deterministic method to characterize canopy radiative transfer properties. Hydrol. Processes, 18, 35833594, https://doi.org/10.1002/hyp.5793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., S. E. Dickerson-Lange, J. A. Lutz, and N. C. Cristea, 2013: Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling. Water Resour. Res., 49, 63566370, https://doi.org/10.1002/wrcr.20504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahat, V., and D. G. Tarboton, 2012: Canopy radiation transmission for an energy balance snowmelt model. Water Resour. Res., 48, W01534, https://doi.org/10.1029/2011WR010438.

    • Search Google Scholar
    • Export Citation
  • Marty, C., and R. Philipona, 2000: The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophys. Res. Lett., 27, 26492652, https://doi.org/10.1029/2000GL011743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeser, D., J. Roubinek, P. Schleppi, F. Morsdorf, and T. Jonas, 2014: Canopy closure, LAI and radiation transfer from airborne LiDAR synthetic images. Agric. For. Meteor., 197, 158168, https://doi.org/10.1016/j.agrformet.2014.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeser, D., M. Stähli, and T. Jonas, 2015: Improved snow interception modelling using canopy parameters derived from airborne LiDAR data. Water Resour. Res., 51, 50415059, https://doi.org/10.1002/2014WR016724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., N. P. Molotch, S. A. Margulis, P. B. Kirchner, and R. C. Bales, 2012: Influence of canopy structure and direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agric. For. Meteor., 161, 4656, https://doi.org/10.1016/j.agrformet.2012.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., J. W. Pomeroy, and T. E. Link, 2015: Variability in shortwave irradiance caused by forest gaps: Measurements, modelling, and implications for snow energetics. Agric. For. Meteor., 207, 6982, https://doi.org/10.1016/j.agrformet.2015.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobis, M., and U. Hunziker, 2005: Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agric. For. Meteor., 128, 243250, https://doi.org/10.1016/j.agrformet.2004.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otsu, N., 1979: A threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern., 9, 6266, https://doi.org/10.1109/TSMC.1979.4310076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and K. Dion, 1996: Winter radiation extinction and reflection in a boreal pine canopy: Measurements and modelling. Hydrol. Processes, 10, 1591–1608, https://doi.org/10.1002/(SICI)1099-1085(199612)10:12<1591::AID-HYP503>3.0.CO;2-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., C. Ellis, A. Rowlands, R. Essery, J. Hardy, T. Link, D. Marks, and J. E. Sicart, 2008: Spatial variability of shortwave irradiance for snowmelt in forests. J. Hydrometeor., 9, 14821490, https://doi.org/10.1175/2008JHM867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., D. Marks, T. Link, C. Ellis, J. Hardy, A. Rowlands, and R. Granger, 2009: The impact of coniferous forest temperature on incoming longwave radiation to melting snow. Hydrol. Processes, 23, 25132525, https://doi.org/10.1002/hyp.7325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pueschel, P., H. Buddenbaum, and J. Hill, 2012: An efficient approach to standardizing the processing of hemispherical images for the estimation of forest structural attributes. Agric. For. Meteor., 160, 113, https://doi.org/10.1016/j.agrformet.2012.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, T. D., and Coauthors, 2014a: Spatial quantification of leafless canopy structure in a boreal birch forest. Agric. For. Meteor., 188, 112, https://doi.org/10.1016/j.agrformet.2013.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, T. D., R. L. H. Essery, N. Rutter, and M. King, 2014b: Data-driven modelling of shortwave radiation transfer to snow through boreal birch and conifer canopies. Hydrol. Processes, 28, 29873007, https://doi.org/10.1002/hyp.9849.

    • Search Google Scholar
    • Export Citation
  • Rowlands, A., J. Pomeroy, J. Hardy, D. Marks, K. Elder, and R. Melloh, 2002: Small-scale spatial variability of radiant energy for snowmelt in a mid-latitude sub-alpine forest. Proc. 59th Eastern Snow Conference, Stowe, VT, Eastern Snow Conference, 109117, https://www.usask.ca/hydrology/papers/Rowlands_et_al_2002.pdf.

  • Seidel, D., S. Fleck, C. Leuschner, and T. Hammett, 2011: Review of ground-based methods to measure the distribution of biomass in forest canopies. Ann. For. Sci., 68, 225244, https://doi.org/10.1007/s13595-011-0040-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D., S. Fleck, and C. Leuschner, 2012: Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography. Agric. For. Meteor., 154–155, 18, https://doi.org/10.1016/j.agrformet.2011.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seyednasrollah, B., M. Kumar, and T. Link, 2013: On the role of vegetation density on net snow cover radiation at the forest floor. J. Geophys. Res. Atmos., 118, 83598374, https://doi.org/10.1002/jgrd.50575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sicart, J. E., R. L. Essery, J. W. Pomeroy, J. Hardy, T. Link, and D. Marks, 2004: Sensitivity study of daytime net radiation during snowmelt to forest canopy and atmospheric conditions. J. Hydrometeor., 5, 774784, https://doi.org/10.1175/1525-7541(2004)005<0774:ASSODN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, G.-Z. M., D. Doley, D. Yates, K.-J. Chao, and C.-F. Hsieh, 2014: Improving accuracy of canopy hemispherical photography by a constant threshold value derived from an unobscured overcast sky. Can. J. For. Res., 44, 1727, https://doi.org/10.1139/cjfr-2013-0082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stähli, M., T. Jonas, and D. Gustafsson, 2009: The role of snow interception in winter-time radiation processes of a coniferous sub-alpine forest. Hydrol. Processes, 23, 24982512, https://doi.org/10.1002/hyp.7180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varhola, A., and N. C. Coops, 2013: Estimation of watershed-level distributed forest structure metrics relevant to hydrologic modeling using LiDAR and Landsat. J. Hydrol., 487, 7086, https://doi.org/10.1016/j.jhydrol.2013.02.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varhola, A., G. W. Frazer, P. Teti, and N. C. Coops, 2012: Estimation of forest structure metrics relevant to hydrologic modelling using coordinate transformation of airborne laser scanning data. Hydrol. Earth Syst. Sci., 16, 37493766, https://doi.org/10.5194/hess-16-3749-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veatch, W., P. D. Brooks, J. R. Gustafson, and N. P. Molotch, 2009: Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid-latitude site. Ecohydrology, 2, 115128, https://doi.org/10.1002/eco.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, C., N. Rutter, F. Zahner, and T. Jonas, 2016a: Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures. J. Geophys. Res. Atmos., 121, 12201235, https://doi.org/10.1002/2015JD024099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, C., N. Rutter, F. Zahner, and T. Jonas, 2016b: Measurement of incoming radiation below forest canopies: A comparison of different radiometer configurations. J. Hydrometeor., 17, 853864, https://doi.org/10.1175/JHM-D-15-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, C., N. Rutter, and T. Jonas, 2017: Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface. J. Geophys. Res. Atmos., 122, 91549172, https://doi.org/10.1002/2017JD026581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Chen, and J. R. Miller, 2005: Determining digital hemispherical photograph exposure for leaf area index estimation. Agric. For. Meteor., 133, 166181, https://doi.org/10.1016/j.agrformet.2005.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1095 638 87
PDF Downloads 547 86 14