An Evaluation of Model Output Statistics for Subseasonal Streamflow Forecasting in European Catchments

Simon Schick Institute of Geography, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Search for other papers by Simon Schick in
Current site
Google Scholar
PubMed
Close
,
Ole Rössler Institute of Geography, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Search for other papers by Ole Rössler in
Current site
Google Scholar
PubMed
Close
, and
Rolf Weingartner Institute of Geography, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Search for other papers by Rolf Weingartner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Subseasonal and seasonal forecasts of the atmosphere, oceans, sea ice, or land surfaces often rely on Earth system model (ESM) simulations. While the most recent generation of ESMs simulates runoff per land surface grid cell operationally, it does not typically simulate river streamflow directly. Here, we apply the model output statistics (MOS) method to the hindcast archive of the European Centre for Medium-Range Weather Forecasts (ECMWF). Linear models are tested that regress observed river streamflow on surface runoff, subsurface runoff, total runoff, precipitation, and surface air temperature simulated by ECMWF’s forecast systems S4 and SEAS5. In addition, the pool of candidate predictors contains observed precipitation and surface air temperature preceding the date of prediction. The experiment is conducted for 16 European catchments in the period 1981–2006 and focuses on monthly average streamflow at lead times of 0 and 20 days. The results show that skill against the streamflow climatology is frequently absent and varies considerably between predictor combinations, catchments, and seasons. Using streamflow persistence as a benchmark model further deteriorates skill. This is most pronounced for a catchment that features lakes, which extend to about 14% of the catchment area. On average, however, the predictor combinations using the ESM runoff simulations tend to perform best.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Simon Schick, simon.schick@giub.unibe.ch

Abstract

Subseasonal and seasonal forecasts of the atmosphere, oceans, sea ice, or land surfaces often rely on Earth system model (ESM) simulations. While the most recent generation of ESMs simulates runoff per land surface grid cell operationally, it does not typically simulate river streamflow directly. Here, we apply the model output statistics (MOS) method to the hindcast archive of the European Centre for Medium-Range Weather Forecasts (ECMWF). Linear models are tested that regress observed river streamflow on surface runoff, subsurface runoff, total runoff, precipitation, and surface air temperature simulated by ECMWF’s forecast systems S4 and SEAS5. In addition, the pool of candidate predictors contains observed precipitation and surface air temperature preceding the date of prediction. The experiment is conducted for 16 European catchments in the period 1981–2006 and focuses on monthly average streamflow at lead times of 0 and 20 days. The results show that skill against the streamflow climatology is frequently absent and varies considerably between predictor combinations, catchments, and seasons. Using streamflow persistence as a benchmark model further deteriorates skill. This is most pronounced for a catchment that features lakes, which extend to about 14% of the catchment area. On average, however, the predictor combinations using the ESM runoff simulations tend to perform best.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Simon Schick, simon.schick@giub.unibe.ch
Save
  • Arnal, L., H. L. Cloke, E. Stephens, F. Wetterhall, C. Prudhomme, J. Neumann, B. Krzeminski, and F. Pappenberger, 2018: Skilful seasonal forecasts of streamflow over Europe? Hydrol. Earth Syst. Sci., 22, 20572072, https://doi.org/10.5194/hess-22-2057-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk, M. Hirschi, and A. K. Betts, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, https://doi.org/10.1175/2008JHM1068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, https://doi.org/10.5194/hess-19-389-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. K. Tippett, 2017: Do statistical pattern corrections improve seasonal climate predictions in the North American Multimodel Ensemble models? J. Climate, 30, 83358355, https://doi.org/10.1175/JCLI-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 1996a: Bagging predictors. Mach. Learn., 24, 123140, https://doi.org/10.1023/A:1018054314350.

  • Breiman, L., 1996b: Out-of-bag estimation. University of California, 13 pp., https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf.

  • Clark, M. P., and Coauthors, 2015: Improving the representation of hydrologic processes in Earth System Models. Water Resour. Res., 51, 59295956, https://doi.org/10.1002/2015WR017096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R. B., and M. A. Stephens, 1986: Goodness-of-Fit Techniques. Marcel Dekker, 576 pp.

  • E-OBS, 2017: Daily temperature and precipitation fields in Europe V.16. ECA&D, http://www.ecad.eu/download/ensembles/ensembles.php.

  • ECRINS, 2012: European catchments and Rivers network system v1.1. EEA, http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network.

  • Emerton, R., and Coauthors, 2018: Developing a global operational seasonal hydro-meteorological forecasting system: GloFAS-Seasonal v1.0. Geosci. Model Dev., 11, 33273346, https://doi.org/10.5194/gmd-11-3327-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, K. L., and C. B. Uvo, 2010: Seasonal streamflow forecast: A GCM multi-model downscaling approach. Hydrol. Res., 41, 503507, https://doi.org/10.2166/nh.2010.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation. Mon. Wea. Rev., 133, 10981118, https://doi.org/10.1175/MWR2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GRDC, 2016: The Global Runoff Data Centre. GRDC, http://www.bafg.de/GRDC/EN/Home/homepage_node.html.

  • Greuell, W., W. H. P. Franssen, H. Biemans, and R. W. A. Hutjes, 2018: Seasonal streamflow forecasts for Europe – Part I: Hindcast verification with pseudo- and real observations. Hydrol. Earth Syst. Sci., 22, 34533472, https://doi.org/10.5194/hess-22-3453-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, W. W., Yuval J. Li, A. Shabbar, and S. Smith, 2003: Seasonal prediction with error estimation of Columbia River streamflow in British Columbia. J. Water Res. Plann. Manage., 129, 146149, https://doi.org/10.1061/(ASCE)0733-9496(2003)129:2(146).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IHME, 2014: International Hydrogeological Map of Europe 1:1,500,000 v1.1. IHME, https://www.bgr.bund.de/EN/Themen/Wasser/Projekte/laufend/Beratung/Ihme1500/ihme1500_projektbeschr_en.html.

  • Jones, M. C., J. S. Marron, and S. J. Sheather, 1996: A brief survey of bandwidth selection for density estimation. J. Amer. Stat. Assoc., 91, 401407, https://doi.org/10.1080/01621459.1996.10476701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, W. H., and H. R. Glahn, 1974: Forecasting local weather by means of model output statistics. Bull. Amer. Meteor. Soc., 55, 12171227, https://doi.org/10.1175/1520-0477(1974)055<1217:FLWBMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laio, F., and S. Tamea, 2007: Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol. Earth Syst. Sci., 11, 12671277, https://doi.org/10.5194/hess-11-1267-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and L. Goddard, 2002: Statistical recalibration of GCM forecasts over southern Africa using model output statistics. J. Climate, 15, 20382055, https://doi.org/10.1175/1520-0442(2002)015<2038:SROGFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, B., and P. Döll, 2004: Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol., 296, 122, https://doi.org/10.1016/j.jhydrol.2004.03.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, B., and Coauthors, 2011: High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ., 9, 494502, https://doi.org/10.1890/100125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., A. W. Wood, D. Llewellyn, D. B. Blatchford, A. G. Goodbody, and F. Pappenberger, 2017: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest. Geophys. Res. Lett., 44, 12 20812 217, https://doi.org/10.1002/2017GL076043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MAFFE, 2017: Spanish Ministry of Agriculture and Fisheries, Food and Environment. MAFFE, http://sig.mapama.es/redes-seguimiento/visor.html?herramienta=Aforos.

  • Meißner, D., B. Klein, and M. Ionita, 2017: Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe. Hydrol. Earth Syst. Sci., 21, 64016423, https://doi.org/10.5194/hess-21-6401-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MEST, 2017: French Ministry for an Ecological and Solidary Transition. MEST, http://www.hydro.eaufrance.fr/.

  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Climate Appl. Meteor., 26, 15891600, https://doi.org/10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monhart, S., C. Spirig, J. Bhend, K. Bogner, C. Schär, and M. A. Liniger, 2018: Skill of subseasonal forecasts in europe: effect of bias correction and downscaling using surface observations. J. Geophys. Res. Atmos., 123, 79998016, https://doi.org/10.1029/2017JD027923.

    • Search Google Scholar
    • Export Citation
  • Mücher, C. A., J. A. Klijn, D. M. Wascher, and J. H. J. Schaminée, 2010: A new European Landscape Classification (LANMAP): A transparent, flexible and user-oriented methodology to distinguish landscapes. Ecol. Indic., 10, 87103, https://doi.org/10.1016/j.ecolind.2009.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies, 2016: Next Generation Earth System Prediction. 1st ed., National Academies Press, 350 pp., https://doi.org/10.17226/21873.

    • Crossref
    • Export Citation
  • Natural Earth, 2018: Free vector and raster map data. Natural Earth, http://www.naturalearthdata.com/.

  • Nilsson, C., C. A. Reidy, M. Dynesius, and C. Revenga, 2005: Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405408, https://doi.org/10.1126/science.1107887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., M. H. Ramos, H. L. Cloke, F. Wetterhall, L. Alfieri, K. Bogner, A. Mueller, and P. Salamon, 2015: How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction. J. Hydrol., 522, 697713, https://doi.org/10.1016/j.jhydrol.2015.01.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2018: R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, L. R. L., F. J. Doblas-Reyes, and C. A. S. Coelho, 2018: Calibration and combination of monthly near-surface temperature and precipitation predictions over Europe. Climate Dyn., https://doi.org/10.1007/s00382-018-4140-4.

    • Search Google Scholar
    • Export Citation
  • Sahu, N., A. W. Robertson, R. Boer, S. Behera, D. G. DeWitt, K. Takara, M. Kumar, and R. B. Singh, 2017: Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models. Stochastic Environ. Res. Risk Assess., 31, 17471758, https://doi.org/10.1007/s00477-016-1297-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616640, https://doi.org/10.1214/13-STS443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schick, S., O. Rössler, and R. Weingartner, 2016: Comparison of cross-validation and bootstrap aggregating for building a seasonal streamflow forecast model. Proc. IAHS, 374, 159163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schick, S., O. Rössler, and R. Weingartner, 2018: Monthly streamflow forecasting at varying spatial scales in the Rhine basin. Hydrol. Earth Syst. Sci., 22, 929942, https://doi.org/10.5194/hess-22-929-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheather, S. J., and M. C. Jones, 1991: A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc. 53B, 683690, http://www.jstor.org/stable/2345597.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., J. Sheffield, E. F. Wood, and D. P. Lettenmaier, 2013: On the sources of global land surface hydrologic predictability. Hydrol. Earth Syst. Sci., 17, 27812796, https://doi.org/10.5194/hess-17-2781-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, L. J., and G. Villarini, 2018: Enhancing the predictability of seasonal streamflow with a statistical-dynamical approach. Geophys. Res. Lett., 45, 65046513, https://doi.org/10.1029/2018GL077945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, L. J., G. Villarini, and A. A. Bradley, 2017: Weighting of NMME temperature and precipitation forecasts across Europe. J. Hydrol., 552, 646659, https://doi.org/10.1016/j.jhydrol.2017.07.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troccoli, A., 2010: Seasonal climate forecasting. Meteor. Appl., 17, 251268, https://doi.org/10.1002/met.184.

  • van Dijk, A. I. J. M., J. L. Peña Arancibia, E. F. Wood, J. Sheffield, and H. E. Beck, 2013: Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. Water Resour. Res., 49, 27292746, https://doi.org/10.1002/wrcr.20251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., and F. Di Giuseppe, 2018: The benefit of seamless forecasts for hydrological predictions over Europe. Hydrol. Earth Syst. Sci., 22, 34093420, https://doi.org/10.5194/hess-22-3409-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and D. P. Lettenmaier, 2008: An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett., 35, L14401, https://doi.org/10.1029/2008GL034648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yossef, N. C., H. Winsemius, A. Weerts, R. van Beek, and M. F. P. Bierkens, 2013: Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing. Water Resour. Res., 49, 46874699, https://doi.org/10.1002/wrcr.20350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., and E. F. Wood, 2012: Downscaling precipitation or bias-correcting streamflow? Some implications for coupled general circulation model (CGCM)-based ensemble seasonal hydrologic forecast. Water Resour. Res., 48, W12519, https://doi.org/10.1029/2012WR012256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, and Z. Ma, 2015: A review on climate-model-based seasonal hydrologic forecasting: Physical understanding and system development. Wiley Interdiscip. Rev.: Water, 2, 523536, https://doi.org/10.1002/wat2.1088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuval, and W. W. Hsieh, 2002: The impact of time-averaging on the detectability of nonlinear empirical relations. Quart. J. Roy. Meteor. Soc., 128, 16091622, https://doi.org/10.1002/qj.200212858311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., J. C. Bennett, Q. J. Wang, A. Schepen, A. W. Wood, D. E. Robertson, and M.-H. Ramos, 2017: How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Climate, 30, 31853196, https://doi.org/10.1175/JCLI-D-16-0652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1187 681 101
PDF Downloads 540 59 10