Using Multisource Satellite Data to Assess Recent Snow-Cover Variability and Uncertainty in the Qinghai–Tibet Plateau

Yingsha Jiang Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yingsha Jiang in
Current site
Google Scholar
PubMed
Close
,
Fei Chen National Center for Atmospheric Research, Boulder, Colorado, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Fei Chen in
Current site
Google Scholar
PubMed
Close
,
Yanhong Gao Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Yanhong Gao in
Current site
Google Scholar
PubMed
Close
,
Michael Barlage National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Michael Barlage in
Current site
Google Scholar
PubMed
Close
, and
Jianduo Li State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Jianduo Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Snow cover in the Qinghai–Tibet Plateau (QTP) is a critical component in the water cycle and regional climate of East Asia. Fractional snow cover (FSC) derived from five satellite sources [the three satellites comprising the multisensor synergy of FengYun-3 (FY-3A/B/C), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Interactive Multisensor Snow and Ice Mapping System (IMS)] were intercompared over the QTP to examine uncertainties in mean snow cover and interannual variability over the last decade. A four-step cloud removal procedure was developed for MODIS and FY-3 data, which effectively reduced the cloud percentage from about 40% to 2%–3% with an error of about 2% estimated by a random sampling method. Compared to in situ snow-depth observations, the cloud-removed FY-3B data have an annual classification accuracy of about 94% for both 0.04° and 0.01° resolutions, which is higher than other datasets and is recommended for use in QTP studies. Among the five datasets analyzed, IMS has the largest snow extent (22% higher than MODIS) and the highest FSC (4.7% higher than MODIS), while the morning-overpass MODIS and FY-3A/C FSC are similar and are around 5% higher than the afternoon-overpass FY-3B FSC. Contrary to MODIS, IMS shows increasing variability in snow cover and snow duration over the last decade (2006–17). Differences in variabilities of FSC and snow duration between products are greater at 5–6 km than lower elevations, with seasonal snow-cover change showing the largest uncertainty in snowmelt date.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0220.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanhong Gao, gaoyh@lzb.ac.cn

Abstract

Snow cover in the Qinghai–Tibet Plateau (QTP) is a critical component in the water cycle and regional climate of East Asia. Fractional snow cover (FSC) derived from five satellite sources [the three satellites comprising the multisensor synergy of FengYun-3 (FY-3A/B/C), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Interactive Multisensor Snow and Ice Mapping System (IMS)] were intercompared over the QTP to examine uncertainties in mean snow cover and interannual variability over the last decade. A four-step cloud removal procedure was developed for MODIS and FY-3 data, which effectively reduced the cloud percentage from about 40% to 2%–3% with an error of about 2% estimated by a random sampling method. Compared to in situ snow-depth observations, the cloud-removed FY-3B data have an annual classification accuracy of about 94% for both 0.04° and 0.01° resolutions, which is higher than other datasets and is recommended for use in QTP studies. Among the five datasets analyzed, IMS has the largest snow extent (22% higher than MODIS) and the highest FSC (4.7% higher than MODIS), while the morning-overpass MODIS and FY-3A/C FSC are similar and are around 5% higher than the afternoon-overpass FY-3B FSC. Contrary to MODIS, IMS shows increasing variability in snow cover and snow duration over the last decade (2006–17). Differences in variabilities of FSC and snow duration between products are greater at 5–6 km than lower elevations, with seasonal snow-cover change showing the largest uncertainty in snowmelt date.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0220.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanhong Gao, gaoyh@lzb.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.73 MB)
Save
  • Brown, R., C. Derksen, and L. Wang, 2007: Assessment of spring snow cover duration variability over northern Canada from satellite datasets. Remote Sens. Environ., 111, 367381, https://doi.org/10.1016/j.rse.2006.09.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., R. T. Pinker, and E. Deviatova, 2005: Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data. J. Hydrometeor., 6, 10021017, https://doi.org/10.1175/JHM447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da Ronco, P., and C. De Michele, 2014: Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrol. Earth Syst. Sci., 18, 45794600, https://doi.org/10.5194/hess-18-4579-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. Yang, W. Zhang, Z. Yang, N. Lu, J. Shi, P. Zhang, Y. Liu, and B. Cai, 2009: An overview of a new Chinese weather satellite FY-3A. Bull. Amer. Meteor. Soc., 90, 15311544, https://doi.org/10.1175/2009BAMS2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gafurov, A., and A. Bárdossy, 2009: Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci., 13, 13611373, https://doi.org/10.5194/hess-13-1361-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. Digirolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181194, https://doi.org/10.1016/S0034-4257(02)00095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, J. L. Foster, and S. V. Kumar, 2010: Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. Environ., 114, 496503, https://doi.org/10.1016/j.rse.2009.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfrich, S. R., D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Processes, 21, 15761586, https://doi.org/10.1002/hyp.6720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., and Coauthors, 2012: Calibration for the solar reflective bands of medium resolution spectral imager onboard FY-3A. IEEE Trans. Geosci. Remote Sens., 50, 49154928, https://doi.org/10.1109/TGRS.2012.2214226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., X. Hao, Q. Feng, W. Wang, and T. Liang, 2014: A new MODIS daily cloud free snow cover mapping algorithm on the Tibetan Plateau. Sci. Cold Arid. Reg., 6, 116123.

    • Search Google Scholar
    • Export Citation
  • Huang, X., J. Deng, W. Wang, Q. Feng, and T. Liang, 2017: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens. Environ., 190, 274288, https://doi.org/10.1016/j.rse.2016.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., P. Droogers, S. M. de Jong, and M. F. P. Bierkens, 2009: Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ., 113, 4049, https://doi.org/10.1016/j.rse.2008.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, A. G., and A. C. Barnett, 2003: Validation of daily MODIS snow cover maps of the upper Rio Grande River basin for the 2000–2001 snow year. Remote Sens. Environ., 86, 162176, https://doi.org/10.1016/S0034-4257(03)00097-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., F. Su, D. Yang, K. Tong, F. Meng, and B. Kan, 2018: Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. Int. J. Climatol., 38, 708728, https://doi.org/10.1002/joc.5204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, T., X. Zhang, H. Xie, C. Wu, Q. Feng, X. Huang, and Q. Chen, 2008: Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens. Environ., 112, 37503761, https://doi.org/10.1016/j.rse.2008.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and M. Yanai, 2002: Influence of Eurasian spring snow cover on Asian summer rainfall. Int. J. Climatol., 22, 10751089, https://doi.org/10.1002/joc.784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, X., and B. Wang, 2019: How autumn Eurasian snow anomalies affect East Asian winter monsoon: A numerical study. Climate Dyn., 52, 6982, https://doi.org/10.1007/s00382-018-4138-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., K. Rittger, C. McKenzie, P. Slaughter, R. E. Davis, and J. Dozier, 2009: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ., 113, 868879, https://doi.org/10.1016/j.rse.2009.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parajka, J., M. Pepe, A. Rampini, S. Rossi, and G. Blöschl, 2010: A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol., 381, 203212, https://doi.org/10.1016/j.jhydrol.2009.11.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paudel, K. P., and P. Andersen, 2011: Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens. Environ., 115, 12341246, https://doi.org/10.1016/j.rse.2011.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., and L. Xu, 2009: MODIS/Terra observed snow cover over the Tibet Plateau: Distribution, variation and possible connection with the East Asian Summer Monsoon (EASM). Theor. Appl. Climatol., 97, 265278, https://doi.org/10.1007/s00704-008-0074-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., L. Xu, and V. V. Salomonson, 2007: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett., 34, L06706, https://doi.org/10.1029/2007GL029262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, D. H., S. Y. Liu, and P. J. Li, 2006: Snow cover distribution, variability, and response to climate change in western China. J. Climate, 19, 18201833, https://doi.org/10.1175/JCLI3694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, B., 1998: The interactive multisensor snow and ice mapping system. Hydrol. Processes, 12, 15371546, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riggs, G., and D. Hall, 2015: MODIS snow products user guide to collection 6. NSIDC Doc., 66 pp., https://nsidc.org/sites/nsidc.org/files/files/MODIS-snow-user-guide-C6.pdf.

  • Rittger, K., T. H. Painter, and J. Dozier, 2013: Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour., 51, 367380, https://doi.org/10.1016/j.advwatres.2012.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simic, A., R. Fernandes, R. Brown, P. Romanov, and W. Park, 2004: Validation of VEGETATION, MODIS, and GOES + SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol. Processes, 18, 10891104, https://doi.org/10.1002/hyp.5509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernekar, A. D., J. Zhou, and J. Shukla, 1995: The effect of Eurasian snow cover on the Indian monsoon. J. Climate, 8, 248266, https://doi.org/10.1175/1520-0442(1995)008<0248:TEOESC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., M. Sharp, R. Brown, C. Derksen, and B. Rivard, 2005: Evaluation of spring snow covered area depletion in the Canadian Arctic from NOAA snow charts. Remote Sens. Environ., 95, 453463, https://doi.org/10.1016/j.rse.2005.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X.-W., and H. Xie, 2009: New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. J. Hydrol., 371, 192200, https://doi.org/10.1016/j.jhydrol.2009.03.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X.-Y., C. Wu, H. Wang, A. Gonsamo, and Z. Liu, 2017: No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000–2015. Sci. Rep., 7, 14645, https://doi.org/10.1038/s41598-017-15208-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., R. Wu, S. Chen, G. Huang, G. Liu, and L. Zhu, 2018: Influence of western Tibetan Plateau summer snow cover on East Asian summer rainfall. J. Geophys. Res. Atmos., 123, 23712386, https://doi.org/10.1002/2017JD028016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, H., 2009: Development and assessment of combined Terra and Aqua snow cover products in Colorado Plateau, USA and northern Xinjiang, China. J. Appl. Remote Sens., 3, 033559, https://doi.org/10.1117/1.3265996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., Z. Hu, Z. Xie, B. Jia, G. Sun, Y. Du, and H. Song, 2018: Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau. Theor. Appl. Climatol., 131, 951965, https://doi.org/10.1007/s00704-016-2020-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., L. Ma, M. Ma, H. Zhang, and W. Yuan, 2017: Spatial-temporal variability of snow cover and depth in the Qinghai–Tibetan plateau. J. Climate, 30, 15211533, https://doi.org/10.1175/JCLI-D-15-0732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., L. Jiang, C. B. Ménard, K. Luojus, J. Lemmetyinen, and J. Pulliainen, 2015: Evaluation of snow products over the Tibetan Plateau. Hydrol. Processes, 29, 32473260, https://doi.org/10.1002/hyp.10427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., B. Ye, D. Zhou, B. Wu, T. Foken, J. Qin, and Z. Zhou, 2011: Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109, 517534, https://doi.org/10.1007/s10584-011-0099-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-S., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, https://doi.org/10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-H., X. Kan, W. Ren, T. Cao, W. Tian, and J. Wang, 2017: Snow cover monitoring in Qinghai-Tibetan Plateau based on Chinese Fengyun-3/VIRR data. J. Indian Soc. Remote Sens., 45, 271283, https://doi.org/10.1007/s12524-015-0527-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1396 634 73
PDF Downloads 882 118 9