Assimilation of Remotely Sensed Leaf Area Index into the Noah-MP Land Surface Model: Impacts on Water and Carbon Fluxes and States over the Continental United States

Sujay V. Kumar Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by Sujay V. Kumar in
Current site
Google Scholar
PubMed
Close
,
David M. Mocko Science Applications International Corporation, Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by David M. Mocko in
Current site
Google Scholar
PubMed
Close
,
Shugong Wang Science Applications International Corporation, Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by Shugong Wang in
Current site
Google Scholar
PubMed
Close
,
Christa D. Peters-Lidard Hydrosphere, Biosphere, and Geophysics, Earth Sciences Division, NASA GSFC, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
, and
Jordan Borak Earth System Science Interdisciplinary Center, Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by Jordan Borak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate representation of vegetation states is required for the modeling of terrestrial water–energy–carbon exchanges and the characterization of the impacts of natural and anthropogenic vegetation changes on the land surface. This study presents a comprehensive evaluation of the impact of assimilating remote sensing–based leaf area index (LAI) retrievals over the continental United States in the Noah-MP land surface model, during a time period of 2000–17. The results demonstrate that the assimilation has a beneficial impact on the simulation of key water budget terms, such as soil moisture, evapotranspiration, snow depth, terrestrial water storage, and streamflow, when compared with a large suite of reference datasets. In addition, the assimilation of LAI is also found to improve the carbon fluxes of gross primary production (GPP) and net ecosystem exchange (NEE). Most prominent improvements in the water and carbon variables are observed over the agricultural areas of the United States, where assimilation improves the representation of vegetation seasonality impacted by cropping schedules. The systematic, added improvements from assimilation in a configuration that employs high-quality boundary conditions highlight the significant utility of LAI data assimilation in capturing the impacts of vegetation changes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sujay V. Kumar, sujay.v.kumar@nasa.gov

Abstract

Accurate representation of vegetation states is required for the modeling of terrestrial water–energy–carbon exchanges and the characterization of the impacts of natural and anthropogenic vegetation changes on the land surface. This study presents a comprehensive evaluation of the impact of assimilating remote sensing–based leaf area index (LAI) retrievals over the continental United States in the Noah-MP land surface model, during a time period of 2000–17. The results demonstrate that the assimilation has a beneficial impact on the simulation of key water budget terms, such as soil moisture, evapotranspiration, snow depth, terrestrial water storage, and streamflow, when compared with a large suite of reference datasets. In addition, the assimilation of LAI is also found to improve the carbon fluxes of gross primary production (GPP) and net ecosystem exchange (NEE). Most prominent improvements in the water and carbon variables are observed over the agricultural areas of the United States, where assimilation improves the representation of vegetation seasonality impacted by cropping schedules. The systematic, added improvements from assimilation in a configuration that employs high-quality boundary conditions highlight the significant utility of LAI data assimilation in capturing the impacts of vegetation changes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sujay V. Kumar, sujay.v.kumar@nasa.gov
Save
  • Albergel, C., and Coauthors, 2017: Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area. Geosci. Model Dev., 10, 38893912, https://doi.org/10.5194/gmd-10-3889-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albergel, C., S. Munier, A. Bocher, B. Bonan, Y. Zheng, C. Draper, D. Leroux, and J.-C. Calvet, 2018: LDAS-Monde sequential assimilation of satellite derived observations applied to the contiguous US: An ERA-5 driven reanalysis of the land surface variables. Remote Sens., 10, 1627, https://doi.org/10.3390/rs10101627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AMIS, 2012: AMIS crop calendar. Viale delle Terme di Caracalla, Rome, Italy, Agricultural Market Information System, Food and Agriculture Organization of the United Nations, www.amis-outlook.org.

  • Anderson, M., J. Norman, J. Mecikalski, J. Otkin, and W. Kustas, 2007: A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. Model formulation. J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Ball, J., I. Woodrow, and J. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, Vol. 4, J. Biggins, Ed., Springer, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48.

    • Crossref
    • Export Citation
  • Barbu, A., J.-C. Calvet, J.-F. Mahfouf, C. Albergel, and S. Lafont, 2011: Assimilation of soil wetness index and leaf area index into the ISBA-A-gs land surface model: Grassland case study. Biogeosciences, 8, 1971, https://doi.org/10.5194/bg-8-1971-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbu, A., J.-C. Calvet, J.-F. Mahfouf, and S. Lafont, 2014: Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: A land data assimilation application over France. Hydrol. Earth Syst. Sci., 18, 173192, https://doi.org/10.5194/hess-18-173-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) products at NSIDC. NSIDC Special Rep. 11, 19 pp., https://nsidc.org/sites/nsidc.org/files/files/nsidc_special_report_11.pdf.

  • Brown, R., and B. Brasnett, 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data, version 1. NSIDC DAAC, accessed January 2019, https://doi.org/10.5067/W9FOYWH0EQZ3.

    • Crossref
    • Export Citation
  • Cowling, S., and C. Field, 2003: Environmental control of leaf area production: Implications for vegetation and land-surface modeling. Global Biogeochem. Cycles, 17, 1007, https://doi.org/10.1029/2002GB001915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., S. V. Kumar, and J. D. Bolten, 2012: On the utility of land surface models for agricultural drought monitoring. Hydrol. Earth Syst. Sci., 16, 34513460, https://doi.org/10.5194/hess-16-3451-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G., R. Reichle, K. Arsenault, P. Houser, S. Kumar, N. Verhoest, and V. Pauwels, 2012: Multiscale assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, https://doi.org/10.1029/2011WR010588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dente, L., G. Satalino, F. Mattia, and M. Rinaldi, 2008: Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sens. Environ., 112, 13951407, https://doi.org/10.1016/j.rse.2007.05.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11, 28232836, https://doi.org/10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., P. van Oevelen, W. Wagner, S. Mecklenburg, A. Robock, and T. Jackson, 2011: A new international network for soil moisture data. Eos, Trans. Amer. Geophys. Union, 92, 141142, https://doi.org/10.1029/2011EO170001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziubanski, D. J., and K. J. Franz, 2016: Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow model. J. Hydrol., 540, 2639, https://doi.org/10.1016/j.jhydrol.2016.05.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., and Coauthors, 2017: Next phase of the NCEP unified land data assimilation system (NULDAS): Vision, requirements and implementation. NASA GSFC, 17 pp., https://ldas.gsfc.nasa.gov/sites/default/files/ldas/nldas/White_Paper_for_Next_Phase_LDAS_final.pdf.

  • Essery, R., J. Pomeroy, J. Parviainen, and P. Storck, 2003: Sublimation of snow from coniferous forests in a climate model. J. Climate, 16, 18551864, https://doi.org/10.1175/1520-0442(2003)016<1855:SOSFCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, H., and Coauthors, 2013: Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties. J. Geophys. Res. Biogeosci., 118, 529548, https://doi.org/10.1002/jgrg.20051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankenberg, C., and J. Berry, 2018: Solar induced chlorophyll fluorescence: Origins, relation to photosynthesis and retrieval. Terrestrial Ecosystems, J. M. Chen, Ed., Vol. 3, Comprehensive Remote Sensing, Elsevier, 143–162, https://doi.org/10.1016/B978-0-12-409548-9.10632-3.

    • Crossref
    • Export Citation
  • Frankenberg, C., and Coauthors, 2011: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett., 38, L17706, https://doi.org/10.1029/2011GL048738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankenberg, C., J. Berry, L. Guanter, and J. Joiner, 2013: Remote sensing of terrestrial chlorophyll fluorescence from space. SPIE Newsroom, https://doi.org/10.1117/2.1201302.004725.

    • Crossref
    • Export Citation
  • Garcia, M., M. Ozdogan, and P. A. Townsend, 2014: Impacts of forest harvest on cold season land surface conditions and land-atmosphere interactions in northern great lakes states. J. Adv. Model. Earth Syst., 6, 923937, https://doi.org/10.1002/2014MS000317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getirana, A., A. Boone, D. Yamazaki, B. Decharme, F. Papa, and N. Mognard, 2012: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon basin. J. Hydrometeor., 13, 16411665, https://doi.org/10.1175/JHM-D-12-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guanter, L., C. Frankenberg, A. Dudhia, P. Lewis, J. Gomez-Dans, A. Kuze, H. Suto, and R. Grainger, 2012: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ., 121, 236251, https://doi.org/10.1016/j.rse.2012.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guanter, L., and Coauthors, 2014: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA, 111, E1327E1333, https://doi.org/10.1073/pnas.1320008111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hain, C. R., W. T. Crow, M. C. Anderson, and M. T. Yilmaz, 2015: Diagnosing neglected soil moisture source–sink processes via a thermal infrared–based two-source energy balance model. J. Hydrometeor., 16, 10701086, https://doi.org/10.1175/JHM-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M., R. DeFries, J. Townshend, and R. Sohlberg, 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, https://doi.org/10.1080/014311600210209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. Gerber, T. Huang, and J. W. Lichstein, 2016: Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data. Global Biogeochem. Cycles, 30, 18271846, https://doi.org/10.1002/2016GB005480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ines, A. V., N. N. Das, J. W. Hansen, and E. G. Njoku, 2013: Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ., 138, 149164, https://doi.org/10.1016/j.rse.2013.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasechko, S., Z. Sharp, J. Gibson, S. Birks, Y. Yi, and P. Fawcett, 2013: Terrestrial water fluxes dominated by transpiration. Nature, 496, 347350, https://doi.org/10.1038/nature11983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, X., L. Kumar, Z. Li, H. Feng, X. Xu, G. Yang, and J. Wang, 2018: A review of data assimilation of remote sensing and crop models. Eur. J. Agron., 92, 141152, https://doi.org/10.1016/j.eja.2017.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joiner, J., and Coauthors, 2014: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ., 152, 375391, https://doi.org/10.1016/j.rse.2014.06.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards a global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012003, https://doi.org/10.5194/bg-6-2001-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2017: Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541, 516520, https://doi.org/10.1038/nature20780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, L., and O. Mutanga, 2017: Remote sensing of above-ground biomass. Remote Sens., 9, 935, https://doi.org/10.3390/rs9090935.

  • Kumar, S., and Coauthors, 2006: Land Information System: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., C. Peters-Lidard, J. Santanello, K. Harrison, Y. Liu, and M. Shaw, 2012: Land surface Verification Toolkit (LVT)—A generalized framework for land surface model evaluation. Geosci. Model Dev., 5, 869886, https://doi.org/10.5194/gmd-5-869-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., and Coauthors, 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, https://doi.org/10.1175/JHM-D-13-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., C. Peters-Lidard, K. Arsenault, A. Getirana, D. Mocko, and Y. Liu, 2015: Quantifying the added value of snow cover area observations in passive microwave snow depth data assimilation. J. Hydrometeor., 16, 17361741, https://doi.org/10.1175/JHM-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., and Coauthors, 2016: Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data Assimilation System. J. Hydrometeor., 17, 19511972, https://doi.org/10.1175/JHM-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., M. Jasinski, D. Mocko, M. Rodell, J. Borak, B. Li, H. Beudoing, and C. Peters-Lidard, 2019: NCA-LDAS land analysis: Development and performance of a multisensor, multivariate land data assimilation system for the National Climate Assessment. J. Hydrometeor., https://doi.org/10.1175/JHM-D-17-0125.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F., and S. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leff, B., N. Ramankutty, and J. Foley, 2004: Geographic distribution of major crops across the world. Global Biogeochem. Cycles, 18, GB1009, https://doi.org/10.1029/2003GB002108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, D., J.-C. Calvet, S. Munier, and C. Albergel, 2018: Using satellite-derived vegetation products to evaluate LDAS-Monde over the Euro-Mediterranean area. Remote Sens., 10, 1199, https://doi.org/10.3390/rs10081199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, S., and Coauthors, 2013: A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth, 6, 533, https://doi.org/10.1080/17538947.2013.805262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, Y., Y. Gai, W. Fan, X. Xu, B. Yan, and Y. Liu, 2012: Validation methods of LAI products based on scaling effect. 2012 IEEE Int. Geoscience and Remote Sensing Symp., Munich, Germany, IEEE, 1692–1694, https://doi.org/10.1109/IGARSS.2012.6351200.

    • Crossref
    • Export Citation
  • Liu, H., J. T. Randerson, J. Lindfors, and F. S. Chapin, 2005: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J. Geophys. Res., 110, D13101, https://doi.org/10.1029/2004JD005158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Coauthors, 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750765, https://doi.org/10.1175/JHM-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., F. Chen, M. Barlage, G. Zhou, and D. Niyogi, 2016: Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model. J. Geophys. Res. Atmos., 121, 13 95313 972, https://doi.org/10.1002/2016JD025597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. Peters-Lidard, S. Kumar, K. Arsenault, and D. Mocko, 2015: Blending satellite-based snow depth products with in-situ observations for streamflow predictions in the Upper Colorado River Basin. Water Resour. Res., 51, 11821202, https://doi.org/10.1002/2014WR016606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDermid, S. S., L. O. Mearns, and A. C. Ruane, 2017: Representing agriculture in Earth system models: Approaches and priorities for development. J. Adv. Model. Earth Syst., 9, 22302265, https://doi.org/10.1002/2016MS000749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D., T. Holmes, R. de Jeu, J. Gash, A. Meesters, and A. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Munier, S., D. Carrer, C. Planque, F. Camacho, C. Albergel, and J.-C. Calvet, 2018: Satellite leaf area index: Global scale analysis of the tendencies per vegetation type over the last 17 years. Remote Sens., 10, 424, https://doi.org/10.3390/rs10030424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214231, https://doi.org/10.1016/S0034-4257(02)00074-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R., Y. Knyazikhin, and N. Shabanov, 2011: Leaf area index and fraction of absorbed PAR products from Terra and Aqua MODIS sensors: Analysis, validation and refinement. Land Remote Sensing and Global Environmental Change, Remote Sensing and Digital Image Processing, Vol. 11, Springer, 603–633, https://doi.org/10.1007/978-1-4419-6749-7_27.

    • Crossref
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2004: Effects of vegetation canopy processes on snow surface energy and mass balances. J. Geophys. Res., 109, D23111, https://doi.org/10.1029/2004JD004884.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D., K. Alapaty, S. Raman, and F. Chen, 2009: Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. J. Appl. Meteor. Climatol., 48, 349368, https://doi.org/10.1175/2008JAMC1662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth System modeling with NASA/GSFC’s Land Information System. Innov. Syst. Software Eng., 3, 157165, https://doi.org/10.1007/s11334-007-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C., S. V. Kumar, D. M. Mocko, and Y. Tian, 2011: Estimating evapotranspiration with land data assimilation systems. Hydrol. Processes, 25, 39793992, https://doi.org/10.1002/hyp.8387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23, 479510, https://doi.org/10.1002/joc.893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., D. McLaughlin, and D. Entekhabi, 2002: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103114, https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., R. Koster, P. Liu, S. P. P. Mahanama, E. Njoku, and M. Owe, 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, https://doi.org/10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., S. Kumar, S. Mahanama, R. Koster, and Q. Liu, 2010: Assimilation of satellite-derived skin temperature observations into land surface models. J. Hydrometeor., 11, 11031122, https://doi.org/10.1175/2010JHM1262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudiger, C., C. Albergel, J.-F. Mahfouf, J.-C. Calvet, and J. Walker, 2010: Evaluation of Jacobians for leaf area index data assimilation with an extended Kalman filter. J. Geophys. Res., 115, D09111, https://doi.org/10.1029/2009JD012912.

    • Search Google Scholar
    • Export Citation
  • Sabater, J., C. Rudiger, J.-C. Calvet, N. Fritz, L. Jarlan, and Y. Kerr, 2008: Joint assimilation of surface soil moisture and LAI observations into a land surface model. Agric. Forest Meteor., 148, 13621373, https://doi.org/10.1016/j.agrformet.2008.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, H., A. Ito, A. Ito, T. Ise, and E. Kato, 2015: Current status and future of land surface models. Soil Sci. Plant Nutr., 61, 3447, https://doi.org/10.1080/00380768.2014.917593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, W. H., and S. Jasechko, 2014: Transpiration in the global water cycle. Agric. For. Meteor., 189–190, 115117, https://doi.org/10.1016/j.agrformet.2014.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502509, https://doi.org/10.1126/science.275.5299.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., C. Frankenberg, M. Jung, J. Joiner, L. Guanter, P. Kohler, and T. Magney, 2018: Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ., 209, 808823, https://doi.org/10.1016/j.rse.2018.02.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., S. Peterson, R. Cuenca, Y. Hagimoto, and D. Lettenmaier, 2009: Satellite-based near-real-time estimation of irrigated crop water consumption. J. Geophys. Res., 114, D05114, https://doi.org/10.1029/2008JD010854.

    • Search Google Scholar
    • Export Citation
  • Tapley, B., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tramontana, G., and Coauthors, 2016: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13, 42914313, https://doi.org/10.5194/bg-13-4291-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. E. Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, https://doi.org/10.1080/01431160500168686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Zhu, W. Li, W. Cao, and Y. Tian, 2014: Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment. J. Appl. Remote Sens., 8, 083674, https://doi.org/10.1117/1.JRS.8.083674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. Ek, H. Wei, and J. Meng, 2012a: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Processes, 26, 467474, https://doi.org/10.1002/hyp.8240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117 D03110, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, J. Wang, P. Chen, X. Yin, L. Zhang, and J. Song, 2014: Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens., 52, 209223, https://doi.org/10.1109/TGRS.2013.2237780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, J. Wang, Y. Xiang, X. Zhao, and J. Song, 2016: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens., 54, 53015318, https://doi.org/10.1109/TGRS.2016.2560522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y., P. Wang, X. Bai, J. Khan, S. Zhang, L. Li, and L. Wang, 2017: Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model. Agric. For. Meteor., 246, 194206, https://doi.org/10.1016/j.agrformet.2017.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., and M. Rodell, 2009: Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J. Hydrometeor., 10, 130148, https://doi.org/10.1175/2008JHM1042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-F., T. J. Hoar, Z.-L. Yang, J. L. Anderson, A. M. Toure, and M. Rodell, 2014: Assimilation of MODIS snow cover through the Data Assimilation Research Testbed and the Community Land Model version 4. J. Geophys. Res. Atmos., 119, 70917103, https://doi.org/10.1002/2013JD021329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, G., and L. Moskal, 2009: Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors, 9, 27192745, https://doi.org/10.3390/s90402719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2016: Greening of the earth and its drivers. Nat. Climate Change, 6, 791795, https://doi.org/10.1038/nclimate3004.

  • Zhu, Z., S. Piao, X. Lian, R. B. Myneni, S. Peng, and H. Yang, 2017: Attribution of seasonal leaf area index trends in the northern latitudes with “optimally” integrated ecosystem models. Global Change Biol., 23, 47984813, https://doi.org/10.1111/gcb.13723.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9017 1769 178
PDF Downloads 2965 461 19