Flash Flooding in Arid/Semiarid Regions: Climatological Analyses of Flood-Producing Storms in Central Arizona during the North American Monsoon

Long Yang School of Geography and Ocean Science, Nanjing University, Nanjing, China, and Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Long Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1872-0175
,
James Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James Smith in
Current site
Google Scholar
PubMed
Close
,
Mary Lynn Baeck Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Mary Lynn Baeck in
Current site
Google Scholar
PubMed
Close
, and
Efrat Morin Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Efrat Morin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Long Yang, yanglong86123@hotmail.com

Abstract

Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Long Yang, yanglong86123@hotmail.com
Save
  • Abatzoglou, J. T., 2016: Contribution of cutoff lows to precipitation across the United States. J. Appl. Meteor. Climatol., 55, 893899, https://doi.org/10.1175/JAMC-D-15-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2019: Cloudburst. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Cloudburst.

  • Arias, P. A., R. Fu, and K. C. Mo, 2012: Decadal variation of rainfall seasonality in the north American monsoon region and its potential causes. J. Climate, 25, 42584274, https://doi.org/10.1175/JCLI-D-11-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armon, M., E. Dente, J. A. Smith, Y. Enzel, and E. Morin, 2018: Synoptic-scale control over modern rainfall and flood patterns in the Levant drylands with implications for past climates. J. Hydrometeor., 19, 10771096, https://doi.org/10.1175/JHM-D-18-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awan, N. K., and H. Formayer, 2017: Cutoff low systems and their relevance to large-scale extreme precipitation in the European Alps. Theor. Appl. Climatol., 129, 149158, https://doi.org/10.1007/s00704-016-1767-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balling, R. C., and S. W. Brazel, 1987a: Recent changes in Phoenix, Arizona summertime diurnal precipitation patterns. Theor. Appl. Climatol., 38, 5054, https://doi.org/10.1007/BF00866253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balling, R. C., and S. W. Brazel, 1987b: Diurnal variations in Arizona monsoon precipitation frequencies. Mon. Wea. Rev., 115, 342346, https://doi.org/10.1175/1520-0493(1987)115<0342:DVIAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbero, R., J. T. Abatzoglou, and H. J. Fowler, 2019: Contribution of large-scale midlatitude disturbances to hourly precipitation extremes in the United States. Climate Dyn., 52, 197208, https://doi.org/10.1007/s00382-018-4123-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belachsen, I., F. Marra, N. Peleg, and E. Morin, 2017: Convective rainfall in a dry climate: Relations with synoptic systems and flash-flood generation in the Dead Sea region. Hydrol. Earth Syst. Sci., 21, 51655180, https://doi.org/10.5194/hess-21-5165-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227, https://doi.org/10.1175/2009JCLI2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 2011: Supercells in environments with atypical hodographs. Wea. Forecasting, 26, 10751083, https://doi.org/10.1175/WAF-D-11-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and B. Stevens, 2006: Principal component analysis of the summertime winds over the Gulf of California: A gulf surge index. Mon. Wea. Rev., 134, 33953414, https://doi.org/10.1175/MWR3253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, F., C. W. Hecht, J. M. Cordeira, and F. M. Ralph, 2018: Synoptic and mesoscale forcing of Southern California extreme precipitation. J. Geophys. Res. Atmos., 123, 13 71413 730, https://doi.org/10.1029/2018JD029045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooke, R. U., and R. W. Reeves, 1976: Arroyos and Environmental Change in the American South-West. Clarendon Press, 226 pp.

  • Corbosiero, K. L., M. J. Dickinson, and L. F. Bosart, 2009: The contribution of eastern North Pacific tropical cyclones to the rainfall climatology of the southwest United States. Mon. Wea. Rev., 137, 24152435, https://doi.org/10.1175/2009MWR2768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., E. P. Krider, and M. D. Malone, 1998: The U.S. national lightning detection network and applications of cloud-to-ground lightning data by electric power utilities. IEEE Trans. Electromagn. Compat., 40, 465480, https://doi.org/10.1109/15.736207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., H. G. Ouwersloot, S. B. Feldstein, M. Riemer, A. M. El Kenawy, M. F. McCabe, and J. Lelieveld, 2018: Identification of tropical-extratropical Interactions and extreme precipitation events in the Middle East based on potential vorticity and moisture transport. J. Geophys. Res. Atmos., 123, 861881, https://doi.org/10.1002/2017JD027587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., 2008: Effects of precipitable water and CAPE on precipitation in Southern Arizona. J. Ariz.-Nev. Acad. Sci., 40, 6673, https://doi.org/10.2181/1533-6085(2008)40[66:EOPWAC]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Englehart, P. J., and A. V. Douglas, 2001: The role of Eastern North Pacific tropical storms in the rainfall climatology of Western Mexico. Int. J. Climatol., 21, 13571370, https://doi.org/10.1002/joc.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farfán, L. M., and J. A. Zehnder, 1994: Moving and stationary mesoscale convective systems over northwest Mexico during the Southwest Area Monsoon Project. Wea. Forecasting, 9, 630639, https://doi.org/10.1175/1520-0434(1994)009<0630:MASMCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FCDMC, 2014a: Storm report: August 19, 2014. Tech. Rep., Flood Control District of Maricopa County, 56 pp., http://alert.fcd.maricopa.gov/alert/WY14/StormRpt_08192014.pdf.

  • FCDMC, 2014b: Storm report: September 8, 2014. Tech. Rep., Flood Control District of Maricopa County, 89 pp., http://alert.fcd.maricopa.gov/alert/WY14/StormRpt_09082014.pdf.

  • Gochis, D. J., L. Brito-Castillo, and W. J. Shuttleworth, 2006: Hydroclimatology of the North American monsoon region in northwest Mexico. J. Hydrol., 316, 5370, https://doi.org/10.1016/j.jhydrol.2005.04.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, W. L., 1983: Backgrounds to paleohydrology. The Arroyo Problem: Paleohydrology and Paleohydraulics in the Short Term, K. G. Gregory, Ed., John Wiley & Sons, 279–302.

  • Griffiths, P. G., C. S. Magirl, R. H. Webb, E. Pytlak, P. A. Troch, and S. W. Lyon, 2009: Spatial distribution and frequency of precipitation during an extreme event: July 2006 mesoscale convective complexes and floods in southeastern Arizona. Water Resour. Res., 45, 114, https://doi.org/10.1029/2008WR007380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1975: A severe southwest desert thunderstorm: 19 August 1973. Mon. Wea. Rev., 103, 344351, https://doi.org/10.1175/1520-0493(1975)103<0344:ASSDTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., Y. N. Takayabu, C. Liu, and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun., 6, 6213, https://doi.org/10.1038/ncomms7213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, A. J., and M. Lanfranco, 2017: Cloudburst, weather bomb or water bomb? A review of terminology for extreme rain events and the media effect. Weather, 72, 155163, https://doi.org/10.1002/wea.2923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. A., and D. M. Schultz, 2006: Intraseasonal variability of summer storms over central Arizona during 1997 and 1999. Wea. Forecasting, 21, 559578, https://doi.org/10.1175/WAF929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and Coauthors, 2003: Progress in pan American CLIVAR research: The North American monsoon system. Atmósfera, 16, 2965.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, and C. Hain, 2004: Relationships between Gulf of California moisture surges and precipitation in the southwestern United States. J. Climate, 17, 29832997, https://doi.org/10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R. E., 1921: Thunderstorm-breeding spots. Mon. Wea. Rev., 49, 193–193, https://doi.org/10.1175/1520-0493(1921)49<193a:TS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Jana, S., B. Rajagopalan, M. A. Alexander, and A. J. Ray, 2018: Understanding the dominant sources and tracks of moisture for summer rainfall in the southwest United States. J. Geophys. Res. Atmos., 123, 48504870, https://doi.org/10.1029/2017JD027652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, T. S., and R. C. Balling, 1994: Diurnal variations in Arizona monsoon lightning data. Mon. Wea. Rev., 122, 16591664, https://doi.org/10.1175/1520-0493(1994)122<1659:DVIAML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, D. K. Adams, Y. L. Serra, J. J. Brost, and T. Luong, 2016: Long-term changes in the climatology of transient inverted troughs over the North American monsoon region and their effects on precipitation. J. Climate, 29, 60376064, https://doi.org/10.1175/JCLI-D-15-0726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leopold, L. B., 1942: Areal extent of intense rainfalls, New Mexico and Arizona. Eos, Trans. Amer. Geophys. Union, 23, 558563, https://doi.org/10.1029/TR023i002p00558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2015: Interdecadal changes in summertime tropical cyclone precipitation over Southeast China during 1960–2009. J. Climate, 28, 14941509, https://doi.org/10.1175/JCLI-D-14-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López, R. E., R. L. Holle, A. I. Watson, and J. Skindlov, 1997: Spatial and temporal distributions of lightning over Arizona from a power utility perspective. J. Appl. Meteor., 36, 825831, https://doi.org/10.1175/1520-0450-36.6.825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luong, T. M., C. L. Castro, H.-I. Chang, T. Lahmers, D. K. Adams, and C. A. Ochoa-Moya, 2017: The more extreme nature of North American monsoon precipitation in the southwestern United States as revealed by a historical climatology of simulated severe weather events. J. Appl. Meteor. Climatol., 56, 25092529, https://doi.org/10.1175/JAMC-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., F. Canova, and L. R. Hoxit, 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 18661877, https://doi.org/10.1175/1520-0493(1980)108<1866:MCOFFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. M. McCollum, and K. W. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778, https://doi.org/10.1175/1520-0434(1995)010<0763:LSPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquardt Collow, A. B., M. G. Bosilovich, and R. D. Koster, 2016: Large-scale influences on summertime extreme precipitation in the northeastern United States. J. Hydrometeor., 17, 30453061, https://doi.org/10.1175/JHM-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mascaro, G., 2017: Multiscale spatial and temporal statistical properties of rainfall in central Arizona. J. Hydrometeor., 18, 227245, https://doi.org/10.1175/JHM-D-16-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazon, J. J., C. L. Castro, D. K. Adams, H.-I. Chang, C. M. Carrillo, and J. J. Brost, 2016: Objective climatological analysis of extreme weather events in Arizona during the North American monsoon. J. Appl. Meteor. Climatol., 55, 24312450, https://doi.org/10.1175/JAMC-D-16-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, D. M., R. A. Maddox, and K. W. Howard, 1995: Case study of a severe mesoscale convective system in central Arizona. Wea. Forecasting, 10, 643665, https://doi.org/10.1175/1520-0434(1995)010<0643:CSOASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mejia, J. F., M. W. Douglas, and P. J. Lamb, 2016: Observational investigation of relationships between moisture surges and mesoscale- to large-scale convection during the North American monsoon. Int. J. Climatol., 36, 25552569, https://doi.org/10.1002/joc.4512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., and H. Yakir, 2014: Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrol. Sci. J., 59, 13531362, https://doi.org/10.1080/02626667.2013.841315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., D. C. Goodrich, R. A. Maddox, X. Gao, H. V. Gupta, and S. Sorooshian, 2006: Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Adv. Water Resour., 29, 843860, https://doi.org/10.1016/j.advwatres.2005.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakley, N. S., and K. T. Redmond, 2014: A climatology of 500-hPa closed lows in the northeastern Pacific Ocean, 1948–2011. J. Appl. Meteor. Climatol., 53, 15781592, https://doi.org/10.1175/JAMC-D-13-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, J. D., 1894: A cloud-burst in Arizona. Amer. Meteor. J., 10 (9), 384.

  • Pascale, S., and S. Bordoni, 2016: Tropical and extratropical controls of Gulf of California surges and summertime precipitation over the southwestern United States. Mon. Wea. Rev., 144, 26952718, https://doi.org/10.1175/MWR-D-15-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2014: Objective categorization of heavy-rain-producing MCS synoptic types by rotated Principal Component Analysis. Mon. Wea. Rev., 142, 17161737, https://doi.org/10.1175/MWR-D-13-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinheiro, H. R., K. I. Hodges, M. A. Gan, and N. J. Ferreira, 2017: A new perspective of the climatological features of upper-level cut-off lows in the Southern Hemisphere. Climate Dyn., 48, 541559, https://doi.org/10.1007/s00382-016-3093-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytlak, E., and M. Goering, 2005: Upper tropospheric troughs and their interaction with the North American monsoon. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., JP2.3, https://ams.confex.com/ams/Annual2005/techprogram/paper_85393.htm.

  • Reavy, P., 2015: 16, possibly 20 die in devastating southern Utah flash floods. Deseret News, 15 September, https://www.deseretnews.com/article/865636814/10-bodies-recovered-in-Hildale-flash-flood-as-search-continues-for-3-more.html.

  • Ritchie, E. A., K. M. Wood, D. S. Gutzler, and S. R. White, 2011: The influence of eastern Pacific tropical cyclone remnants on the southwestern United States. Mon. Wea. Rev., 139, 192210, https://doi.org/10.1175/2010MWR3389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., J. A. Smith, E. Bou-Zeid, and M. L. Baeck, 2016: The influence of land surface heterogeneities on heavy convective rainfall in the Baltimore–Washington metropolitan area. Mon. Wea. Rev., 144, 553573, https://doi.org/10.1175/MWR-D-15-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634, https://doi.org/10.1175/1520-0442(1996)009<1621:WVTAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seastrand, S., Y. Serra, C. Castro, and E. Ritchie, 2015: The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol., 35, 20192032, https://doi.org/10.1002/joc.4104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., 2002: The redevelopment of a weather-type classification scheme for North America. Int. J. Climatol., 22, 5168, https://doi.org/10.1002/joc.709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, Y. Zhang, and C. A. Doswell, 2001: Extreme rainfall and flooding from supercell thunderstorms. J. Hydrometeor., 2, 469489, https://doi.org/10.1175/1525-7541(2001)002<0469:ERAFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, J. Signell, L. Yang, E. Morin, and D. C. Goodrich, 2018: “The paroxysmal precipitation of the desert”: Flash floods in the southwestern United States. 32nd Conf. on Hydrology, Austin, TX, Amer. Meteor. Soc., J48.4, https://ams.confex.com/ams/98Annual/webprogram/Paper334430.html.

  • Svoma, B. M., 2010: The influence of monsoonal gulf surges on precipitation and diurnal precipitation patterns in central Arizona. Wea. Forecasting, 25, 281289, https://doi.org/10.1175/2009WAF2222299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, K. H., D. C. Goodrich, D. E. Myers, and S. Sorooshian, 2003: Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. J. Hydrol., 271, 121, https://doi.org/10.1016/S0022-1694(02)00311-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., and K. W. Howard, 2009: Investigation of a severe downburst storm near Phoenix, Arizona, as seen by a mobile Doppler radar and the KIWA WSR-88D. Wea. Forecasting, 24, 856867, https://doi.org/10.1175/2008WAF2222117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2013: Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1995–2010. Atmos. Res., 124, 137148, https://doi.org/10.1016/j.atmosres.2012.12.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., R. S. Bowman, R. L. Wyckoff, R. T. Jakubowski, and K. E. Richards, 2006: Analysis of a monsoon flood event in an ephemeral tributary and its downstream hydrologic effects. Water Resour. Res., 42, W03404, https://doi.org/10.1029/2005WR004036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, C. E., R. A. Maddox, and K. W. Howard, 1999: Summertime convective storm environments in central Arizona: local observations. Wea. Forecasting, 14, 9941006, https://doi.org/10.1175/1520-0434(1999)014<0994:SCSEIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, B. M. O., 1990: Transmission losses in arid region. J. Hydraul. Eng., 116, 129138, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(129).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. I., R. E. López, and R. L. Holle, 1994: Diurnal cloud-to-ground lightning patterns in Arizona during the southwest monsoon. Mon. Wea. Rev., 122, 17161725, https://doi.org/10.1175/1520-0493(1994)122<1716:DCTGLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willingham, K. M., and K. H. Howard, 2010: Characteristics of microbursts in central Arizona. 14th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 9.1, https://ams.confex.com/ams/90annual/webprogram/Paper158319.html.

  • Wood, K. M., and E. A. Ritchie, 2013: An updated climatology of tropical cyclone impacts on the southwestern United States. Mon. Wea. Rev., 141, 43224336, https://doi.org/10.1175/MWR-D-13-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2014: A 40-year climatology of extratropical transition in the eastern North Pacific. J. Climate, 27, 59996015, https://doi.org/10.1175/JCLI-D-13-00645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolley, R., R. Marsell, and N. Grover, 1946: Cloudburst floods in Utah, 1850-1938. USGS Water-Supply Paper 994, 128 pp., http://pubs.usgs.gov/wsp/0994/report.pdf.

  • Yang, L., and J. Smith, 2018: Sensitivity of extreme rainfall to atmospheric moisture content in the arid/semiarid southwestern United States: Implications for probable maximum precipitation estimates. J. Geophys. Res. Atmos., 123, 16381656, https://doi.org/10.1002/2017JD027850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., J. Smith, M. L. Baeck, B. Smith, F. Tian, and D. Niyogi, 2016: Structure and evolution of flash flood producing storms in a small urban watershed. J. Geophys. Res. Atmos., 121, 31393152, https://doi.org/10.1002/2015JD024478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Liu, J. A. Smith, and F. Tian, 2017a: Typhoon Nina and the August 1975 flood over central China. J. Hydrometeor., 18, 451472, https://doi.org/10.1175/JHM-D-16-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., J. Smith, M. L. Baeck, E. Morin, and D. C. Goodrich, 2017b: Flash flooding in arid/semi-arid regions: Dissecting the hydrometeorology and hydrology of the 19 August 2014 storm and flood hydroclimatology in Arizona. J. Hydrometeor., 18, 31033123, https://doi.org/10.1175/JHM-D-17-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1703 657 43
PDF Downloads 1109 205 40