Impact of Reference Dataset Selection on RCM Evaluation, Bias Correction, and Resulting Climate Change Signals of Precipitation

David Gampe Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany

Search for other papers by David Gampe in
Current site
Google Scholar
PubMed
Close
,
Josef Schmid Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany

Search for other papers by Josef Schmid in
Current site
Google Scholar
PubMed
Close
, and
Ralf Ludwig Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany

Search for other papers by Ralf Ludwig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Gridded datasets of precipitation are of great importance to evaluate recent climate models and are frequently applied to select a subset of available models. As climate models are still prone to biases on the regional scale, gridded datasets are also essential to correct or adjust these biases. Various studies revealed considerable differences, that is, observational uncertainty, in the available gridded datasets of precipitation, especially over complex terrain. This study focuses on the impacts of observational uncertainty on the evaluation, selection, and bias correction of 15 regional climate model (RCM) simulations provided through the EURO-CORDEX initiative over the alpine Adige catchment located in northern Italy. Nine reference datasets originating from observations, reanalysis, and remote sensing are applied to evaluate the performance of RCMs and select a subset based on validity. These reference datasets are then applied to bias correct the RCM ensemble using a standard quantile mapping method, and the resulting changes in the projections are assessed. The presented results show a selection of similar RCMs, indicating that observational uncertainty is lower than model uncertainty. The influence of the choice of the reference dataset on bias correction is negligible for the climate change signals. Small differences in projected change signals can be attributed to model selection. As expected, the choice of the reference dataset strongly influences future projections of precipitation even more pronounced for the extremes. The findings of this study highlight the need to account for observational uncertainty for bias correction of RCM simulations for impact modeling studies.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Gampe, david.gampe@googlemail.com

Abstract

Gridded datasets of precipitation are of great importance to evaluate recent climate models and are frequently applied to select a subset of available models. As climate models are still prone to biases on the regional scale, gridded datasets are also essential to correct or adjust these biases. Various studies revealed considerable differences, that is, observational uncertainty, in the available gridded datasets of precipitation, especially over complex terrain. This study focuses on the impacts of observational uncertainty on the evaluation, selection, and bias correction of 15 regional climate model (RCM) simulations provided through the EURO-CORDEX initiative over the alpine Adige catchment located in northern Italy. Nine reference datasets originating from observations, reanalysis, and remote sensing are applied to evaluate the performance of RCMs and select a subset based on validity. These reference datasets are then applied to bias correct the RCM ensemble using a standard quantile mapping method, and the resulting changes in the projections are assessed. The presented results show a selection of similar RCMs, indicating that observational uncertainty is lower than model uncertainty. The influence of the choice of the reference dataset on bias correction is negligible for the climate change signals. Small differences in projected change signals can be attributed to model selection. As expected, the choice of the reference dataset strongly influences future projections of precipitation even more pronounced for the extremes. The findings of this study highlight the need to account for observational uncertainty for bias correction of RCM simulations for impact modeling studies.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Gampe, david.gampe@googlemail.com
Save
  • Addor, N., and E. M. Fischer, 2015: The influence of natural variability and interpolation errors on bias characterization in RCM simulations. J. Geophys. Res. Atmos., 120, 10 18010 195, https://doi.org/10.1002/2014JD022824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Addor, N., M. Rohrer, R. Furrer, and J. Seibert, 2016: Propagation of biases in climate models from the synoptic to the regional scale: Implications for bias adjustment. J. Geophys. Res. Atmos., 121, 20752089, https://doi.org/10.1002/2015JD024040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K. L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biemans, H., L. H. Speelman, F. Ludwig, E. J. Moors, A. J. Wiltshire, P. Kumar, D. Gerten, and P. Kabat, 2013: Future water resources for food production in five South Asian river basins and potential for adaptation – a modeling study. Sci. Total Environ., 468–469, S117S131, https://doi.org/10.1016/j.scitotenv.2013.05.092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., R. Lucchesi, and M. Suarez, 2016: MERRA-2: File specification. GMAO Office Note 9 (version 1.1), 73 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf.

  • Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013a: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res., 49, 41874205, https://doi.org/10.1002/wrcr.20331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013b: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol., 479, 200214, https://doi.org/10.1016/j.jhydrol.2012.11.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiogna, G., B. Majone, K. C. Paoli, E. Diamantini, E. Stella, S. Mallucci, V. Lencioni, F. Zandonai, and A. Bellin, 2016: A review of hydrological and chemical stressors in the Adige catchment and its ecological status. Sci. Total Environ., 540, 429443, https://doi.org/10.1016/j.scitotenv.2015.06.149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dahlgren, P., T. Landelius, P. Kållberg, and S. Gollvik, 2016: A high-resolution regional reanalysis for Europe. Part 1: Three-dimensional reanalysis with the regional HIgh-Resolution Limited-Area Model (HIRLAM). Quart. J. Roy. Meteor. Soc., 142, 21192131, https://doi.org/10.1002/qj.2807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81, 5370, https://doi.org/10.1007/s10584-006-9228-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, G. P., S. Somot, E. Sanchez-Gomez, C. M. Goodess, D. Jacob, G. Lenderink, and O. B. Christensen, 2012: The spread amongst ENSEMBLES regional scenarios: Regional climate models, driving general circulation models and interannual variability. Climate Dyn., 38, 951964, https://doi.org/10.1007/s00382-011-1053-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., 2016: Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos., 121, 54885511, https://doi.org/10.1002/2015JD024411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., P. Paruolo, and R. Rojas, 2012: Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. J. Geophys. Res., 117, D17110, https://doi.org/10.1029/2012JD017968.

    • Search Google Scholar
    • Export Citation
  • Ehret, U., V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert, 2012: Should we apply bias correction to global and regional climate model data? Hydrol. Earth Syst. Sci., 16, 33913404, https://doi.org/10.5194/hess-16-3391-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., F. Ji, C. Lee, P. Smith, D. Argüeso, and L. Fita, 2014: Design of a regional climate modelling projection ensemble experiment – NARCliM. Geosci. Model Dev., 7, 621629, https://doi.org/10.5194/gmd-7-621-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gampe, D., and R. Ludwig, 2017: Evaluation of gridded precipitation data products for hydrological applications in complex topography. Hydrology, 4, 53, https://doi.org/10.3390/hydrology4040053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gampe, D., G. Nikulin, and R. Ludwig, 2016: Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci. Total Environ., 573, 15031518, https://doi.org/10.1016/j.scitotenv.2016.08.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herold, N., A. Behrangi, and L. V. Alexander, 2017: Large uncertainties in observed daily precipitation extremes over land. J. Geophys. Res. Atmos., 122, 668681, https://doi.org/10.1002/2016JD025842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric model ensemble. Quart. J. Roy. Meteor. Soc., 141, 23502375, https://doi.org/10.1002/qj.2528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iizumi, T., H. Takikawa, Y. Hirabayashi, N. Hanasaki, and M. Nishimori, 2017: Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. J. Geophys. Res. Atmos., 122, 78007819, https://doi.org/10.1002/2017JD026613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isotta, F. A., and Coauthors, 2014: The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol., 34, 16571675, https://doi.org/10.1002/joc.3794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isotta, F. A., R. Vogel, and C. Frei, 2015: Evaluation of European regional reanalyses and downscalings for precipitation in the Alpine region. Meteor. Z., 24, 1537, https://doi.org/10.1127/metz/2014/0584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, https://doi.org/10.1007/s10113-013-0499-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., and Coauthors, 2017: Observational uncertainty and regional climate model evaluation: A pan-European perspective. Int. J. Climatol., https://doi.org/10.1002/joc.5249.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, T., S. Dadson, G. Buys, and C. Prudhomme, 2013: Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol., 33, 13671381, https://doi.org/10.1002/joc.3518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landelius, T., P. Dahlgren, S. Gollvik, A. Jansson, and E. Olsson, 2016: A high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Quart. J. Roy. Meteor. Soc., 142, 21322142, https://doi.org/10.1002/qj.2813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., H. W. ter Maat, H. Biemans, A. B. Shrestha, P. Wester, and W. W. Immerzeel, 2016: Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int. J. Climatol., 36, 39884005, https://doi.org/10.1002/joc.4608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2016: Bias correcting climate change simulations - A critical review. Curr. Climate Change Rep., 2, 211220, https://doi.org/10.1007/s40641-016-0050-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendlik, T., and A. Gobiet, 2016: Selecting climate simulations for impact studies based on multivariate patterns of climate change. Climatic Change, 135, 381393, https://doi.org/10.1007/s10584-015-1582-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mpelasoka, F. S., and F. H. S. Chiew, 2009: Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeor., 10, 11681183, https://doi.org/10.1175/2009JHM1045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muerth, M., and Coauthors, 2013: On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci., 17, 11891204, https://doi.org/10.5194/hess-17-1189-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarro-Ortega, A., and Coauthors, 2015: Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project. Sci. Total Environ., 503–504, 39, https://doi.org/10.1016/j.scitotenv.2014.06.081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palazzi, E., J. Hardenberg, and A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, https://doi.org/10.1029/2012JD018697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., J. O. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, https://doi.org/10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, B. D. Santer, and P. J. Gleckler, 2009: Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA, 106, 84418446, https://doi.org/10.1073/pnas.0900094106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeor., 16, 24212442, https://doi.org/10.1175/JHM-D-14-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poméon, T., B. Diekkrüger, and R. Kumar, 2018: Computationally efficient multivariate calibration and validation of a grid-based hydrologic model in sparsely gauged West African river basins. Water, 10, 1418, https://doi.org/10.3390/w10101418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and A. Gobiet, 2017: Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol., 37, 305327, https://doi.org/10.1002/joc.4706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Climate Dyn., 46, 383412, https://doi.org/10.1007/s00382-015-2589-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajczak, J., S. Kotlarski, N. Salzmann, and C. Schär, 2016: Robust climate scenarios for sites with sparse observations: A two-step bias correction approach. Int. J. Climatol., 36, 12261243, https://doi.org/10.1002/joc.4417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Ramos, M., A. Rodríguez, A. Dosio, C. M. Goodess, C. Harpham, M. I. Mínguez, and E. Sánchez, 2016: Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century. Climatic Change, 134, 283297, https://doi.org/10.1007/s10584-015-1518-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaller, N., I. Mahlstein, J. Cermak, and R. Knutti, 2011: Analyzing precipitation projections: A comparison of different approaches to climate model evaluation. J. Geophys. Res., 116, D10118, https://doi.org/10.1029/2010JD014963.

    • Search Google Scholar
    • Export Citation
  • Schamm, K., M. Ziese, K. Raykova, A. Becker, P. Finger, A. Meyer-Christoffer, and U. Schneider, 2016: GPCC Full Data Daily version 1.0: daily land-surface precipitation from rain gauges built on GTS based and historic data. NCAR RDA, accessed 29 December 2017, https://doi.org/10.5065/D6V69GRT.

    • Crossref
    • Export Citation
  • Smiatek, G., H. Kunstmann, and A. Senatore, 2016: EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res. Atmos., 121, 77107728, https://doi.org/10.1002/2015JD024727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, J., N. J. Potter, F. H. S. Chiew, L. Zhang, B. Wang, J. Vaze, and J. P. Evans, 2015: How does bias correction of regional climate model precipitation affect modelled runoff? Hydrol. Earth Syst. Sci., 19, 711728, https://doi.org/10.5194/hess-19-711-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2013: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Syst. Sci., 17, 5061, https://doi.org/10.5194/hess-17-5061-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15301544, https://doi.org/10.1002/joc.2168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., A. Gobiet, and G. Heinrich, 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449468, https://doi.org/10.1007/s10584-011-0224-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torma, C., F. Giorgi, and E. Coppola, 2015: Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J. Geophys. Res. Atmos., 120, 39573972, https://doi.org/10.1002/2014JD022781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5, https://doi.org/10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volosciuk, C., D. Maraun, M. Vrac, and M. Widmann, 2017: A combined statistical bias correction and stochastic downscaling method for precipitation. Hydrol. Earth Syst. Sci., 21, 16931719, https://doi.org/10.5194/hess-21-1693-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcke, R., and L. Bärring, 2016: Selecting regional climate scenarios for impact modelling studies. Environ. Modell. Software, 78, 191201, https://doi.org/10.1016/j.envsoft.2016.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zubler, E. M., A. M. Fischer, F. Fröb, and M. A. Liniger, 2016: Climate change signals of CMIP5 general circulation models over the Alps—Impact of model selection. Int. J. Climatol., 36, 30883104, https://doi.org/10.1002/joc.4538.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 760 183 26
PDF Downloads 743 106 7