River Discharge Estimation based on Satellite Water Extent and Topography: An Application over the Amazon

Dinh Thi Lan Anh Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Paris, France, and University of Science and Technology of Hanoi, Hanoi, Vietnam

Search for other papers by Dinh Thi Lan Anh in
Current site
Google Scholar
PubMed
Close
and
Filipe Aires Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, and Estellus, Paris, France

Search for other papers by Filipe Aires in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

River discharge (RD) estimates are necessary for many applications, including water management, flood risk, and water cycle studies. Satellite-derived long-term GIEMS-D3 surface water extent (SWE) maps and HydroSHEDS data, at 90-m resolution, are here used to estimate several hydrological quantities at a monthly time scale over a few selected locations within the Amazon basin. Two methods are first presented to derive the water level (WL): the “hypsometric curve” and the “histogram cutoff” approaches at an 18 km × 18 km resolution. The obtained WL values are interpolated over the whole water mask using a bilinear interpolation. The two methods give similar results and validation with altimetry is satisfactory, with a correlation ranging from 0.72 to 0.89 in the seven considered stations over three rivers (i.e., Wingu, Negro, and Solimoes Rivers). River width (RW) and water volume change (WVC) are also estimated. WVC is evaluated with GRACE total water storage change, and correlations range from 0.77 to 0.88. A neural network (NN) statistical model is then used to estimate the RD based on four predictors (SWE, WL, WVC, and RW) and on in situ RD measurements. Results compare well to in situ measurements with a correlation of about 0.97 for the raw data (and 0.84 for the anomalies). The presented methodologies show the potential of historical satellite data (the combination of SWE with topography) to help estimate RD. Our study focuses here on a large river in the Amazon basin at a monthly scale; additional analyses would be required for other rivers, including smaller ones, in different environments, and at higher temporal scale.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Filipe Aires, filipe.aires@obspm.fr

Abstract

River discharge (RD) estimates are necessary for many applications, including water management, flood risk, and water cycle studies. Satellite-derived long-term GIEMS-D3 surface water extent (SWE) maps and HydroSHEDS data, at 90-m resolution, are here used to estimate several hydrological quantities at a monthly time scale over a few selected locations within the Amazon basin. Two methods are first presented to derive the water level (WL): the “hypsometric curve” and the “histogram cutoff” approaches at an 18 km × 18 km resolution. The obtained WL values are interpolated over the whole water mask using a bilinear interpolation. The two methods give similar results and validation with altimetry is satisfactory, with a correlation ranging from 0.72 to 0.89 in the seven considered stations over three rivers (i.e., Wingu, Negro, and Solimoes Rivers). River width (RW) and water volume change (WVC) are also estimated. WVC is evaluated with GRACE total water storage change, and correlations range from 0.77 to 0.88. A neural network (NN) statistical model is then used to estimate the RD based on four predictors (SWE, WL, WVC, and RW) and on in situ RD measurements. Results compare well to in situ measurements with a correlation of about 0.97 for the raw data (and 0.84 for the anomalies). The presented methodologies show the potential of historical satellite data (the combination of SWE with topography) to help estimate RD. Our study focuses here on a large river in the Amazon basin at a monthly scale; additional analyses would be required for other rivers, including smaller ones, in different environments, and at higher temporal scale.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Filipe Aires, filipe.aires@obspm.fr
Save
  • Aires, F., 2004: Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 1. Network weights. J. Geophys. Res., 109, D10303, https://doi.org/10.1029/2003JD004173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., 2014: Combining datasets of satellite-retrieved products. Part I: Methodology and water budget closure. J. Hydrometeor., 15, 16771691, https://doi.org/10.1175/JHM-D-13-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., C. Prigent, and W. B. Rossow, 2004: Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 2. Output errors. J. Geophys. Res., 109, D10304, https://doi.org/10.1029/2003JD004174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., C. Prigent, and W. B. Rossow, 2005: Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships. J. Geophys. Res., 110, D11103, https://doi.org/10.1029/2004JD005094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., F. Papa, and C. Prigent, 2013: A long-term, high-resolution wetland dataset over the Amazon basin, downscaled from a multiwavelength retrieval using SAR data. J. Hydrometeor., 14, 594607, https://doi.org/10.1175/JHM-D-12-093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., F. Papa, C. Prigent, J.-F. Crétaux, and M. Bergé-Nguyen, 2014: Characterization and space–time downscaling of the inundation extent over the inner Niger Delta using GIEMS and MODIS data. J. Hydrometeor., 15, 171192, https://doi.org/10.1175/JHM-D-13-032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., L. Miolane, C. Prigent, B. Pham, E. Fluet-Chouinard, B. Lehner, and F. Papa, 2017: A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations. J. Hydrometeor., 18, 13051325, https://doi.org/10.1175/JHM-D-16-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., C. Prigent, E. Fluet-Chouinard, D. Yamazaki, F. Papa, and B. Lehner, 2018: Comparison of visible and multi-satellite global inundation datasets at high-spatial resolution. Remote Sens. Environ., 216, 427441, https://doi.org/10.1016/j.rse.2018.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashmore, P., and E. Sauks, 2006: Prediction of discharge from water surface width in a braided river with implications for at-a-station hydraulic geometry. Water Resour. Res., 42, 7911, https://doi.org/10.1029/2005WR003993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biancamaria, S., D. P. Lettenmaier, and T. M. Pavelsky, 2016: The SWOT mission and its capabilities for land hydrology. Surv. Geophys., 37, 307337, https://doi.org/10.1007/s10712-015-9346-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerklie, D. M., S. Lawrence Dingman, C. J. Vorosmarty, C. H. Bolster, and R. G. Congalton, 2003: Evaluating the potential for measuring river discharge from space. J. Hydrol., 278, 1738, https://doi.org/10.1016/S0022-1694(03)00129-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brakenridge, G. R., S. V. Nghiem, E. Anderson, and S. Chien, 2005: Space-based measurement of river runoff. Eos, Trans. Amer. Geophys. Union, 86, 185188, https://doi.org/10.1029/2005EO190001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brakenridge, G. R., S. V. Nghiem, E. Anderson, and R. Mic, 2007: Orbital microwave measurement of river discharge and ice status. Water Resour. Res., 43, W04405, https://doi.org/10.1029/2006WR005238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calmant, S., J. S. da Silva, D. M. Moreira, F. Seyler, C. K. Shum, J.-F. Crétaux, and G. Gabalda, 2013: Detection of Envisat RA2/ICE-1 retracked radar altimetry bias over the Amazon basin rivers using GPS. Adv. Space Res., 51, 15511564, https://doi.org/10.1016/j.asr.2012.07.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cretaux, J., and Coauthors, 2011: SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res., 47, 14971507, https://doi.org/10.1016/j.asr.2011.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, S., L.-L. Fu, S. Cherchali, and P. Vaze, 2018: Surface Water and Ocean Topography Mission (SWOT) Project science requirements document. Tech. Rep. JPL D-61923, Jet Propulsion Laboratory, California Institute of Technology, 29 pp., https://swot.jpl.nasa.gov/docs/D-61923_SRD_Rev_B_20181113.pdf.

  • Durand, M., and Coauthors, 2016: An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res., 52, 45274549, https://doi.org/10.1002/2015WR018434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fluet-Chouinard, E., B. Lehner, L.-M. Rebelo, F. Papa, and S. K. Hamilton, 2015: Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ., 158, 348361, https://doi.org/10.1016/j.rse.2014.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, C. J., and L. C. Smith, 2014: Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proc. Natl. Acad. Sci. USA, 111, 47884791, https://doi.org/10.1073/pnas.1317606111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, C. J., L. C. Smith, and J. Lee, 2014: Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters. Water Resour. Res., 50, 96049619, https://doi.org/10.1002/2014WR016109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hornik, K., M. Stinchcombe, and H. White, 1990: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3, 551560, https://doi.org/10.1016/0893-6080(90)90005-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, B., K. Verdin, and A. Jarvis, 2008: New global hydrography derived from spaceborne elevation data. Eos, Trans. Amer. Geophys. Union, 89, 9394, https://doi.org/10.1029/2008EO100001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munier, S., F. Aires, S. Schlaffer, C. Prigent, F. Papa, P. Maisongrande, and M. Pan, 2014: Combining data sets of satellite-retrieved products for basin-scale water balance study: 2. Evaluation on the Mississippi Basin and closure correction model. J. Geophys. Res. Atmos., 119, 12 10012 116, https://doi.org/10.1002/2014JD021953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papa, F., F. Frappart, A. Güntner, C. Prigent, F. Aires, A. C. V. Getirana, and R. Maurer, 2013: Surface freshwater storage and variability in the Amazon basin from multi-satellite observations, 1993–2007. J. Geophys. Res. Atmos., 118, 11 95111 965, https://doi.org/10.1002/2013JD020500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paris, A., and Coauthors, 2016: Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin. Water Resour. Res., 52, 37873814, https://doi.org/10.1002/2014WR016618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pekel, J.-F., A. Cottam, N. Gorelick, and A. S. Belward, 2016: High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418422, https://doi.org/10.1038/nature20584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., E. Matthews, F. Aires, and W. B. Rossow, 2001: Remote sensing of global wetland dynamics with multiple satellite data sets. Geophys. Res. Lett., 28, 46314634, https://doi.org/10.1029/2001GL013263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews, 2007: Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res., 112 D12107, https://doi.org/10.1029/2006JD007847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., D. P. Lettenmaier, F. Aires, and F. Papa, 2016: Toward a high-resolution monitoring of continental surface water extent and dynamics, at global scale: From GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography). Surv. Geophys., 37, 339355, https://doi.org/10.1007/s10712-015-9339-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. I, MIT Press, 567 pp.

    • Crossref
    • Export Citation
  • Santos da Silva, J., S. Calmant, F. Seyler, O. C. Rotunno Filho, G. Cochonneau, and W. J. Mansur, 2010: Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens. Environ., 114, 21602181, https://doi.org/10.1016/j.rse.2010.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. C., 1997: Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Processes, 11, 14271439, https://doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. C., B. L. Isacks, R. R. Forster, A. L. Bloom, and I. Preuss, 2007: Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: First results. Water Resour. Res., 31, 13251329, https://doi.org/10.1029/95WR00145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarpanelli, A., L. Brocca, T. Lacava, F. Melone, T. Moramarco, M. Faruolo, N. Pergola, and V. Tramutoli, 2013: Toward the estimation of river discharge variations using MODIS data in ungauged basins. Remote Sens. Environ., 136, 4755, https://doi.org/10.1016/j.rse.2013.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarpanelli, A., E. Santi, M. J. Tourian, P. Filippucci, G. Amarnath, and L. Brocca, 2018: Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network. IEEE Trans. Geosci. Remote Sens., 57, 329341, https://doi.org/10.1109/TGRS.2018.2854625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tourian, M. J., C. Schwatke, and N. Sneeuw, 2017: River discharge estimation at daily resolution from satellite altimetry over an entire river basin. J. Hydrol., 546, 230247, https://doi.org/10.1016/j.jhydrol.2017.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, K. L., W. O. Thomas Jr., and R. M. Hirsch, 1995: Stream-gaging program of the U.S. Geological Survey. USGS Circular 1123, https://pubs.usgs.gov/circ/circ1123/.

    • Crossref
    • Export Citation
  • Yamazaki, D., S. Kanae, H. Kim, and T. Oki, 2011: A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., M. A. Trigg, and D. Ikeshima, 2015: Development of a global ~90 m water body map using multi-temporal Landsat images. Remote Sens. Environ., 171, 337351, https://doi.org/10.1016/j.rse.2015.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., and Coauthors, 2017: A high-accuracy map of global terrain elevations. Geophys. Res. Lett., 44, 58445853, https://doi.org/10.1002/2017GL072874.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1752 262 27
PDF Downloads 1324 229 28