Simulating Future Runoff in a Complex Terrain Alpine Catchment with EURO-CORDEX Data

Gerhard Smiatek Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by Gerhard Smiatek in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0938-9804
and
Harald Kunstmann Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, and Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With large elevation gradients and high hydrometeorological variability, Alpine catchments pose special challenges to hydrological climate change impact assessment. Data from seven regional climate models run within the Coordinated Regional Climate Downscaling Experiments (CORDEX), each driven with a different boundary forcing, are used to exemplarily evaluate the reproduction of observed flow duration curves and access the future discharge of the Ammer River located in Alpine southern Germany applying the hydrological simulation model called the Water Flow and Balance Simulation Model (WaSiM). The results show that WaSiM reasonably reproduces the observed runoff for the entire catchment when driven with observed precipitation. When applied with CORDEX evaluation data (1989–2008) forced by ERA-Interim, the simulations underestimate the extreme runoff and reproduce the high percentile values with errors in the range from −37% to 55% with an ensemble mean of around 15%. Runs with historical data 1975–2005 reveal larger errors, up to 120%, with an ensemble mean of around 50% overestimation. Also, the results show a large spread between the simulations, primarily resulting from deficiencies in the precipitation data. Results indicate future changes for 2071–2100 in the 99.5th percentile runoff value of up to 9% compared to 1975–2005. An increase in high flows is also supported by flow return periods obtained from a larger sample of highest flows over 50 years, which reveals for 2051–2100 lower return periods for high runoff values compared to 1956–2005. Obtained results are associated with substantial uncertainties leading to the conclusion that CORDEX data at 0.11° resolution are likely inadequate for driving hydrologic analyses in mesoscale catchments that require a high standard of fidelity for hydrologic simulation performance.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gerhard Smiatek, gerhard.smiatek@kit.edu

Abstract

With large elevation gradients and high hydrometeorological variability, Alpine catchments pose special challenges to hydrological climate change impact assessment. Data from seven regional climate models run within the Coordinated Regional Climate Downscaling Experiments (CORDEX), each driven with a different boundary forcing, are used to exemplarily evaluate the reproduction of observed flow duration curves and access the future discharge of the Ammer River located in Alpine southern Germany applying the hydrological simulation model called the Water Flow and Balance Simulation Model (WaSiM). The results show that WaSiM reasonably reproduces the observed runoff for the entire catchment when driven with observed precipitation. When applied with CORDEX evaluation data (1989–2008) forced by ERA-Interim, the simulations underestimate the extreme runoff and reproduce the high percentile values with errors in the range from −37% to 55% with an ensemble mean of around 15%. Runs with historical data 1975–2005 reveal larger errors, up to 120%, with an ensemble mean of around 50% overestimation. Also, the results show a large spread between the simulations, primarily resulting from deficiencies in the precipitation data. Results indicate future changes for 2071–2100 in the 99.5th percentile runoff value of up to 9% compared to 1975–2005. An increase in high flows is also supported by flow return periods obtained from a larger sample of highest flows over 50 years, which reveals for 2051–2100 lower return periods for high runoff values compared to 1956–2005. Obtained results are associated with substantial uncertainties leading to the conclusion that CORDEX data at 0.11° resolution are likely inadequate for driving hydrologic analyses in mesoscale catchments that require a high standard of fidelity for hydrologic simulation performance.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gerhard Smiatek, gerhard.smiatek@kit.edu
Save
  • Alfieri, L., L. Feyen, F. Dottori, and A. Bianchi, 2015: Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environ. Change, 35, 199212, https://doi.org/10.1016/j.gloenvcha.2015.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnault, J., and Coauthors, 2018: Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: an ensemble analysis for central Europe. J. Hydrometeor., 19, 10071025, https://doi.org/10.1175/JHM-D-17-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, https://doi.org/10.1002/2014JD021478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, N. M. Roberts, and C. A. T. Ferro, 2014: The value of high-resolution Met Office regional climate models in the simulation of multihourly precipitation extremes. J. Climate, 27, 61556174, https://doi.org/10.1175/JCLI-D-13-00723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang, Q. T., P. Laux, and H. Kunstmann, 2017: Future high- and low-flow estimations for Central Vietnam: A hydro-meteorological modelling chain approach. Hydrol. Sci. J., 62, 18671889, https://doi.org/10.1080/02626667.2017.1353696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, C., W. Greuell, J. Andersson, D. Gerten, G. Pisacane, P. Roudier, and F. Ludwig, 2017: Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Climatic Change, 143, 1326, https://doi.org/10.1007/s10584-017-1971-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duong, T., 2018: ks: Kernel Smoothing, version 1.11.5. R package, https://CRAN.R-project.org/package=ks.

  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, https://doi.org/10.1002/joc.1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, P., S. Kotlarski, M. A. Liniger, and C. Schär, 2018: Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models. Cryosphere, 12, 124, https://doi.org/10.5194/tc-12-1-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Torma, E. Coppola, N. Ban, C. Schär, and S. Somot, 2016: Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat. Geosci., 9, 584589, https://doi.org/10.1038/ngeo2761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, W. H., and G. Ampt, 1911: Studies in soil physics, I, Flow of air and water through soils. J. Agric. Sci., 4, 124, https://doi.org/10.1017/S0021859600001441.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., T. Wagener, L. M. Tallaksen, and K. Engeland, 2012: Evaluation of nine large-scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resour. Res., 48, W11504, https://doi.org/10.1029/2011WR010911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamon, W. R., 1961: Estimating potential evapotranspiration. J. Hydraul. Div., 87, 107120.

  • Haylock, M., N. Hofstra, A. Klein Tank, E. Klok, P. Jones, and M. New, 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos., 113, 21562202, https://doi.org/10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isotta, F. A., and Coauthors, 2014: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol., 34, 16571675, https://doi.org/10.1002/joc.3794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, https://doi.org/10.1007/s10113-013-0499-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E., N. Roberts, H. Fowler, M. Roberts, S. Chan, and C. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution mode. Nat. Climate Change, 4, 570576, https://doi.org/10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiese, R., and Coauthors, 2018: The TERENO Pre-Alpine Observatory: Integrating Meteorological, Hydrological, and Biogeochemical Measurements and Modeling. Vadose Zone J., 17, https://doi.org/10.2136/vzj2018.03.0060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev., 7, 12971333, https://doi.org/10.5194/gmd-7-1297-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunstmann, H., K. Schneider, R. Forkel, and R. Knoche, 2004: Impact analysis of climate change for an Alpine catchment using high resolution dynamic downscaling of ECHAM4 time slices. Hydrol. Earth Syst. Sci., 8, 10311045, https://doi.org/10.5194/hess-8-1031-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LFU, 2007: Gewässerkundlicher Bericht Hochwasser August 2005 (in German). Tech. Rep., Bayerisches Landesamt für Umwelt, 75 pp., https://media.hnd.bayern.de/berichte/Gewaesserkundl_Bericht_HW200508.pdf.

  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, https://doi.org/10.1175/JCLI-D-12-00821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ott, I., and Coauthors, 2013: High resolution climate change impact analysis on medium sized river catchments in Germany: An ensemble assessment. J. Hydrometeor., 14, 11751193, https://doi.org/10.1175/JHM-D-12-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peschke, G., 1987: Soil moisture and runnoff components from a physically founded approach. Acta Hydrophys., 31, 191205.

  • Prein, A. F., and A. Gobiet, 2017: Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol., 37, 305327, https://doi.org/10.1002/joc.4706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits? Climate Dyn., 46, 383412, https://doi.org/10.1007/s00382-015-2589-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., A. Gobiet, M. Suklitsch, H. Truhetz, N. K. Awan, K. Keuler, and G. Georgievski, 2013a: Added value of convection permitting seasonal simulations. Climate Dyn., 41, 26552677, https://doi.org/10.1007/s00382-013-1744-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., G. J. Holland, R. M. Rasmussen, J. Done, K. Ikeda, M. P. Clark, and C. H. Liu, 2013b: Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J. Climate, 26, 48484857, https://doi.org/10.1175/JCLI-D-12-00727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajczak, J., and C. Schär, 2017: Projections of future precipitation extremes over Europe: A multimodel assessment of climate simulations. J. Geophys. Res. Atmos., 122, 10 77310 800, https://doi.org/10.1002/2017JD027176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K., A. Prein, R. Rasmussen, K. Ikeda, and C. Liu, 2019: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., https://doi.org/10.1007/S00382-017-4000-7, in press.

    • Search Google Scholar
    • Export Citation
  • Schulla, J., 2017: Model Description WaSiM. Tech. Rep., ETH Zürich, 347 pp., http://www.wasim.ch/downloads/doku/wasim/wasim_2017_en.pdf.

  • Skamarock, W., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smiatek, G., H. Kunstmann, and J. Werhahn, 2012: Implementation and performance analysis of a high resolution coupled numerical weather and river runoff prediction model system for an Alpine catchment. Environ. Modell. Software, 38, 231243, https://doi.org/10.1016/j.envsoft.2012.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smiatek, G., H. Kunstmann, and A. Senatore, 2016: EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res., 121, 77107728, https://doi.org/10.1002/2015JD024727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A., J. Freer, P. Bates, and C. Sampson, 2014: Comparing ensemble projections of flooding against flood estimation by continuous simulation. J. Hydrol., 511, 205219, https://doi.org/10.1016/j.jhydrol.2014.01.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 1229, https://doi.org/10.1016/j.jhydrol.2012.05.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Besselaar, E., M. Haylock, G. van der Schrier, and A. M. G. Klein Tank, 2011: A European daily high-resolution observational gridded data set of sea level pressure. J. Geophys. Res., 116, D11110, https://doi.org/10.1029/2010JD015468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2013: The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dyn., 41, 25552575, https://doi.org/10.1007/s00382-013-1714-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viganò, G., G. Confortola, R. Fornaroli, R. Cabrini, S. Canobbio, V. Mezzanotte, and D. Bocchiola, 2016: Effects of future climate change on a river habitat in an Italian Alpine catchment. J. Hydrol. Eng., 21, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T., M. Themeßl, A. Schüppel, A. Gobiet, H. Stigler, and S. Birk, 2017: Impacts of climate change on stream flow and hydro power generation in the Alpine region. Environ. Earth Sci., 76, https://doi.org/10.1007/s12665-016-6318-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, A., D. Heinzeller, S. Wagner, T. Rummler, and H. Kunstmann, 2018: Explicit convection and scale-aware cumulus parameterizations: High-resolution simulations over areas of different topography in Germany. Mon. Wea. Rev., 146, 19251944, https://doi.org/10.1175/MWR-D-17-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zacharias, S., and Coauthors, 2011: A network of terrestrial environmental observatories in Germany. Vadose Zone J., 10, 955973, https://doi.org/10.2136/vzj2010.0139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zubler, E. M., A. M. Fischer, F. Fröb, and M. A. Liniger, 2016: Climate change signals of CMIP5 general circulation models over the Alps – Impact of model selection. Int. J. Climatol., 36, 30883104, https://doi.org/10.1002/joc.4538.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 92 8
PDF Downloads 368 83 12