Performance of Various Forms of the Palmer Drought Severity Index in China from 1961 to 2013

Ziqian Zhong College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Ziqian Zhong in
Current site
Google Scholar
PubMed
Close
,
Bin He College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Bin He in
Current site
Google Scholar
PubMed
Close
,
Lanlan Guo School of Geography, Beijing Normal University, Beijing, China

Search for other papers by Lanlan Guo in
Current site
Google Scholar
PubMed
Close
, and
Yafeng Zhang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yafeng Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A topic of ongoing debate on the application of PDSI is whether to use the original version of the PDSI or a self-calibrating form, as well as which method to use for calculating potential evapotranspiration (PET). In this study, the performances of four forms of the PDSI, including the original PDSI based on the Penman–Monteith method for calculating PET (ETp), the PDSI based on the crop reference evapotranspiration method for calculating PET (ET0), the self-calibrating PDSI (scPDSI) based on ETp, and the scPDSI based on ET0, were evaluated in China using the normalized difference vegetation index (NDVI), modeled soil moisture anomalies (SMA), and the terrestrial water storage deficit index (WSDI). The interannual variations of all forms of PDSI agreed well with each other and presented a weak increasing trend, suggesting a climate wetting in China from 1961 to 2013. PDSI-ET0 correlated more closely with NDVI anomalies, SMA, and WSDI than did PDSI-ETp in northern China, especially in northeastern China, while PDSI-ETp correlated more closely with SMA and WSDI in southern China. PDSI-ET0 performed better than PDSI-ETp in regions where the annual average rainfall is between 350 and 750 mm yr−1. The spatial comparability of scPDSI was better than that of PDSI, while the PDSI correlated more closely with NDVI anomalies, SMA, and WSDI than did scPDSI in most regions of China. Knowledge from this study provides important information for the choice of PDSI forms when it is applied for different practices.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin He, hebin@bnu.edu.cn

Abstract

A topic of ongoing debate on the application of PDSI is whether to use the original version of the PDSI or a self-calibrating form, as well as which method to use for calculating potential evapotranspiration (PET). In this study, the performances of four forms of the PDSI, including the original PDSI based on the Penman–Monteith method for calculating PET (ETp), the PDSI based on the crop reference evapotranspiration method for calculating PET (ET0), the self-calibrating PDSI (scPDSI) based on ETp, and the scPDSI based on ET0, were evaluated in China using the normalized difference vegetation index (NDVI), modeled soil moisture anomalies (SMA), and the terrestrial water storage deficit index (WSDI). The interannual variations of all forms of PDSI agreed well with each other and presented a weak increasing trend, suggesting a climate wetting in China from 1961 to 2013. PDSI-ET0 correlated more closely with NDVI anomalies, SMA, and WSDI than did PDSI-ETp in northern China, especially in northeastern China, while PDSI-ETp correlated more closely with SMA and WSDI in southern China. PDSI-ET0 performed better than PDSI-ETp in regions where the annual average rainfall is between 350 and 750 mm yr−1. The spatial comparability of scPDSI was better than that of PDSI, while the PDSI correlated more closely with NDVI anomalies, SMA, and WSDI than did scPDSI in most regions of China. Knowledge from this study provides important information for the choice of PDSI forms when it is applied for different practices.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin He, hebin@bnu.edu.cn
Save
  • Akinremi, O. O., S. M. Mcginn, and A. G. Barr, 1996: Evaluation of the Palmer drought index on the Canadian Prairies. J. Climate, 9, 897905, https://doi.org/10.1175/1520-0442(1996)009<0897:EOTPDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., http://www.fao.org/3/X0490E/X0490E00.htm.

  • Alley, W. M., 1984: The Palmer drought severity index: Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109, https://doi.org/10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2015: Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. J. Climate, 28, 54305447, https://doi.org/10.1175/JCLI-D-14-00707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, C., J. Zhao, and C. An, 2015: Climate changes in different climate zones in central China and their relationship with ENSO from 1957 to 2011 (in Chinese). Areal Res. Dev., 34 (5), 121127.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011a: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res., 116, D12115, https://doi.org/10.1029/2010JD015541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011b: Erratum: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, https://doi.org/10.1002/wcc.81.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. Qian, 2004: A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, https://doi.org/10.1175/JHM-386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dodds, P. E., W. S. Meyer, and A. Barton, 2005: Review of methods to estimate irrigated reference crop evapotranspiration across Australia. CRC for Irrigation Futures Tech. Rep. No 04/05, 48 pp., https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:8177b7f4-9950-4e57-8458-f338d0e5c047.

  • Hao, Y., S. Q. Wang, H. Q. Lu, Q. Yu, Z. C. Zhu, R. B. Myneni, L. Qiang, and H. H. Shugart, 2015: Development of a remotely sensing seasonal vegetation-based Palmer Drought Severity Index and its application of global drought monitoring over 1982-2011. J. Geophys. Res. Atmos., 119, 94199440, https://doi.org/10.1002/2014JD021673.

    • Search Google Scholar
    • Export Citation
  • Hobbins, M., A. Dai, M. Roderick, and G. Farquhar, 2008: Revisiting potential evapotranspiration parameterizations as drivers of long-term water balance trends. Geophys. Res. Lett., 35, L12403, https://doi.org/10.1029/2008GL033840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, T., X. Wang, C. Zhang, L. Lang, and H. Li, 2017: Responses of vegetation activity to drought in northern China. Land Degrad. Dev., 28, 19131921, https://doi.org/10.1002/ldr.2709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobi, J., D. Perrone, L. L. Duncan, and G. Hornberger, 2013: A tool for calculating the Palmer drought indices. Water Resour. Res., 49, 60866089, https://doi.org/10.1002/wrcr.20342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1948: Rank Correlation Methods. Charles Griffin, 160 pp.

  • Li, B., Y. Chen, Z. Chen, and W. Li, 2012: Trends in runoff versus climate change in typical rivers in the arid region of northwest China. Quat. Int., 282, 8795, https://doi.org/10.1016/j.quaint.2012.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., Y. Chen, X. Shi, Z. Chen, and W. Li, 2013: Temperature and precipitation changes in different environments in the arid region of northwest China. Theor. Appl. Climatol., 112, 589596, https://doi.org/10.1007/s00704-012-0753-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., Y. Shen, Y. Zeng, and C. Liu, 2010: Trend in pan evaporation and its attribution over the past 50 years in China. J. Geogr. Sci., 20, 557568, https://doi.org/10.1007/s11442-010-0557-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Y. Luo, D. Zhang, M. Zhang, and C. Liu, 2011: Recent changes in pan-evaporation dynamics in China. Geophys. Res. Lett., 38, L13404, https://doi.org/10.1029/2011GL047929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Ren, Y. Hong, Y. Zhu, X. Yang, F. Yuan, and S. Jiang, 2016: Sensitivity analysis of standardization procedures in drought indices to varied input data selections. J. Hydrol., 538, 817830, https://doi.org/10.1016/j.jhydrol.2016.04.073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Y. Zhu, L. Ren, V. P. Singh, X. Yang, and F. Yuan, 2017: A multiscalar Palmer drought severity index. Geophys. Res. Lett., 44, 68506858, https://doi.org/10.1002/2017GL073871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D., B. R. Scanlon, L. Longuevergne, A. Y. Sun, D. N. Fernando, and H. Save, 2013: GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett., 40, 33953401, https://doi.org/10.1002/grl.50655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. 8th Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • McVicar, T., L. Li, T. Van Niel, M. Hutchinson, X. Mu, and Z. Liu, 2005: Spatially distributing 21 years of monthly hydrometeorological data in China: Spatio-temporal analysis of FAO-56 crop reference evapotranspiration and pan evaporation in the context of climate change. CSIRO Land and Water Technical Report 8/05, 316 pp., https://doi.org/10.4225/08/585ac38172fb7.

    • Crossref
    • Export Citation
  • McVicar, T., and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416-417, 182205, https://doi.org/10.1016/j.jhydrol.2011.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nachtergaele, F., and Coauthors, 2010: The Harmonized World Soil Database. Proc. 19th World Congress of Soil Science, Brisbane, Australia, International Union of Soil Sciences, 34–37, https://www.iuss.org/19th%20WCSS/Symposium/pdf/2330.pdf.

  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp., http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120–145, https://doi.org/10.1098/rspa.1948.0037.

    • Crossref
    • Export Citation
  • Penman, H. L., 1963: Vegetation and hydrology. Commonwealth Bureau of Soils Tech. Comm. 53, Commonwealth Agricultural Bureaux, 124 pp.

  • Qin, Y., D. Yang, H. Lei, X. Kai, and X. Xu, 2015: Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960–2010. J. Hydrol., 526, 5567, https://doi.org/10.1016/j.jhydrol.2014.09.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., L. D. Rotstayn, G. D. Farquhar, and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, https://doi.org/10.1029/2007GL031166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrier, G. V. D., K. R. Briffa, P. D. Jones, and T. J. Osborn, 2006: Summer moisture variability across Europe. J. Climate, 19, 10131017, https://doi.org/10.1175/JCLI3734.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W., 1993: Evaporation. Handbook of Hydrology, D. R. Maidment, Ed. McGraw-Hill, 4.1–4.53.

  • Sinha, D., T. H. Syed, J. S. Famiglietti, J. T. Reager, and R. C. Thomas, 2017: Characterizing drought in India using GRACE observations of terrestrial water storage deficit. J. Hydrometeor., 18, 381396, https://doi.org/10.1175/JHM-D-16-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, https://doi.org/10.2307/210739.

  • Trenberth, K. E., A. Dai, G. V. D. Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valiantzas, J. D., 2013: Simplified forms for the standardized FAO-56 Penman–Monteith reference evapotranspiration using limited weather data. J. Hydrol., 505, 1323, https://doi.org/10.1016/j.jhydrol.2013.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Schrier, G., K. R. Briffa, T. J. Osborn, and E. R. Cook, 2006: Summer moisture availability across North America. J. Geophys. Res., 111, D11102, https://doi.org/10.1029/2005JD006745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Schrier, G., P. Jones, and K. Briffa, 2011: The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J. Geophys. Res., 116, D03106, https://doi.org/10.1029/2010JD015001.

    • Search Google Scholar
    • Export Citation
  • Vicenteserrano, S. M., S. Beguería, J. I. Lópezmoreno, M. Angulo, and A. E. Kenawy, 2010: A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer drought severity index. J. Hydrometeor., 11, 10331043, https://doi.org/10.1175/2010JHM1224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicenteserrano, S. M., and Coauthors, 2013: Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA, 110, 5257, https://doi.org/10.1073/pnas.1207068110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicenteserrano, S. M., and Coauthors, 2014: Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett., 9, 044001, https://doi.org/10.1088/1748-9326/9/4/044001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., Y. Zhu, R. Xu, and J. Liu, 2015: Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Nat. Hazards, 75, 24372451, https://doi.org/10.1007/s11069-014-1436-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Li, C. Lai, Z. Zeng, R. Zhong, X. Chen, X. Zhou, and M. Wang, 2017: Does drought in China show a significant decreasing trend from 1961 to 2009? Sci. Total Environ., 579, 314324, https://doi.org/10.1016/j.scitotenv.2016.11.098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought severity index. J. Climate, 17, 23352351, https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., Z. Wang, X. Zhou, C. Lai, W. Lin, and X. Chen, 2016: Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int. J. Climatol., 36, 28662885, https://doi.org/10.1002/joc.4524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C.-Y., L. Gong, T. Jiang, D. Chen, and V. Singh, 2006: Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol., 327, 8193, https://doi.org/10.1016/j.jhydrol.2005.11.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., S. Wu, D. Zheng, and Q. Yang, 2008: Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China. Agric. Water Manage., 95, 7784, https://doi.org/10.1016/j.agwat.2007.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, M., Q. Li, M. J. Hayes, M. D. Svoboda, and R. R. Heim, 2014: Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010? Int. J. Climatol., 34, 545558, https://doi.org/10.1002/joc.3701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., Q. Zhang, A. D. Werner, and X. Liu, 2016: GRACE-based hydrological drought evaluation of the Yangtze River basin, China. J. Hydrometeor., 17, 811828, https://doi.org/10.1175/JHM-D-15-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., F. Sun, J. Xu, Y. Chen, Y. F. Sang, and C. Liu, 2016: Dependence of trends in and sensitivity of drought over China (1961–2013) on potential evaporation model. Geophys. Res. Lett., 43, 206213, https://doi.org/10.1002/2015GL067473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., T. Qi, J. Li, V. P. Singh, and Z. Wang, 2015: Spatiotemporal variations of pan evaporation in China during 1960–2005: Changing patterns and causes. Int. J. Climatol., 35, 903912, https://doi.org/10.1002/joc.4025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., G. Gao, W. An, X. Zou, H. Li, and M. Hou, 2017: Timescale differences between SC-PDSI and SPEI for drought monitoring in China. Phys. Chem. Earth, 102, 4858, https://doi.org/10.1016/j.pce.2015.10.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., G. A, I. Velicogna, and J. S. Kimball, 2017: A global gridded dataset of GRACE drought severity index for 2002–14: Comparison with PDSI and SPEI and a case study of the Australia Millennium Drought. J. Hydrometeor., 18, 21172129, https://doi.org/10.1175/JHM-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S. Q., 1983: A new scheme for comprehensive physical regionalization in China. Acta Geogr. Sin., 50, 110, https://doi.org/10.11821/xb198301001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1037 431 21
PDF Downloads 844 176 16