Differences in Response of Terrestrial Water Storage Components to Precipitation over 168 Global River Basins

Yafeng Zhang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yafeng Zhang in
Current site
Google Scholar
PubMed
Close
,
Bin He College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Bin He in
Current site
Google Scholar
PubMed
Close
,
Lanlan Guo Academy of Disaster Reduction and Emergency Management, School of Geography, Beijing Normal University, Beijing, China

Search for other papers by Lanlan Guo in
Current site
Google Scholar
PubMed
Close
, and
Daochen Liu School of Environment and Planning, Liaocheng University, Shandong, China

Search for other papers by Daochen Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A time lag exists between precipitation P falling and being converted into terrestrial water. The responses of terrestrial water storage (TWS) and its individual components to P over the global scale, which are vital for understanding the interactions and mechanisms between climatic variables and hydrological components, are not well constrained. In this study, relying on land surface models, we isolate five component storage anomalies from TWS anomalies (TWSA) derived from the Gravity Recovery and Climate Experiment mission (GRACE): canopy water storage anomalies (CWSA), surface water storage anomalies (SWSA), snow water equivalent anomalies (SWEA), soil moisture storage anomalies (SMSA), and groundwater storage anomalies (GWSA). The responses of TWSA and of the individual components of TWSA to P are then evaluated over 168 global basins. The lag between TWSA and P is quantified by calculating the correlation coefficients between GRACE-based TWSA and P for different time lags, then identifying the lag (measured in months) corresponding to the maximum correlation coefficient. A multivariate regression model is used to explore the relationship between climatic and basin characteristics and the lag between TWSA and P. Results show that the spatial distribution of TWSA trend presents a similar global pattern to that of P for the period January 2004–December 2013. TWSA is positively related to P over basins but with lags of variable duration. The lags are shorter in the low- and midlatitude basins (1–2 months) than those in the high-latitude basins (6–9 months). The spatial patterns of the maximum correlations and the corresponding lags between individual components of the TWSA and P are consistent with those of the GRACE-based analysis, except for SWEA (3–8 months) and CWSA (0 months). The lags between GWSA, SMSA, and SWSA to P can be arranged as GWSA > SMSA ≥ SWSA. Regression analysis results show that the lags between TWSA and P are related to the mean temperature, mean precipitation, mean latitude, mean longitude, mean elevation, and mean slope.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0253.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin He, hebin@bnu.edu.cn

Abstract

A time lag exists between precipitation P falling and being converted into terrestrial water. The responses of terrestrial water storage (TWS) and its individual components to P over the global scale, which are vital for understanding the interactions and mechanisms between climatic variables and hydrological components, are not well constrained. In this study, relying on land surface models, we isolate five component storage anomalies from TWS anomalies (TWSA) derived from the Gravity Recovery and Climate Experiment mission (GRACE): canopy water storage anomalies (CWSA), surface water storage anomalies (SWSA), snow water equivalent anomalies (SWEA), soil moisture storage anomalies (SMSA), and groundwater storage anomalies (GWSA). The responses of TWSA and of the individual components of TWSA to P are then evaluated over 168 global basins. The lag between TWSA and P is quantified by calculating the correlation coefficients between GRACE-based TWSA and P for different time lags, then identifying the lag (measured in months) corresponding to the maximum correlation coefficient. A multivariate regression model is used to explore the relationship between climatic and basin characteristics and the lag between TWSA and P. Results show that the spatial distribution of TWSA trend presents a similar global pattern to that of P for the period January 2004–December 2013. TWSA is positively related to P over basins but with lags of variable duration. The lags are shorter in the low- and midlatitude basins (1–2 months) than those in the high-latitude basins (6–9 months). The spatial patterns of the maximum correlations and the corresponding lags between individual components of the TWSA and P are consistent with those of the GRACE-based analysis, except for SWEA (3–8 months) and CWSA (0 months). The lags between GWSA, SMSA, and SWSA to P can be arranged as GWSA > SMSA ≥ SWSA. Regression analysis results show that the lags between TWSA and P are related to the mean temperature, mean precipitation, mean latitude, mean longitude, mean elevation, and mean slope.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0253.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin He, hebin@bnu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 4.05 MB)
Save
  • Ahmed, M., M. Sultan, J. Wahr, and E. Yan, 2014: The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth Sci. Rev., 136, 289300, https://doi.org/10.1016/j.earscirev.2014.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altman, D. G., and J. M. Bland, 1995: Statistics notes: The normal distribution. BMJ, 310, 298, https://doi.org/10.1136/bmj.310.6975.298.

  • Andrew, R. L., H. Guan, and O. Batelaan, 2017: Large-scale vegetation responses to terrestrial moisture storage changes. Hydrol. Earth Syst. Sci., 21, 44694478, https://doi.org/10.5194/hess-21-4469-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asoka, A., T. Gleeson, Y. Wada, and V. Mishra, 2017: Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci., 10, 109117, https://doi.org/10.1038/ngeo2869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awange, J. L., M. Gebremichael, E. Forootan, G. Wakbulcho, R. Anyah, V. G. Ferreira, and T. Alemayehu, 2014: Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Adv. Water Resour., 74, 6478, https://doi.org/10.1016/j.advwatres.2014.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, H., K. Yang, and C. Wang, 2017: Characteristics of GLDAS soil-moisture data on the Tibet Plateau. Sci. Cold Arid. Reg., 9, 127141.

    • Search Google Scholar
    • Export Citation
  • Beaudoing, H., and M. Rodell, 2015: GLDAS_NOAH025_M: GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.0. Goddard Earth Sciences Data and Information Services Center, accessed 15 January 2018, https://doi.org/10.5067/9SQ1B3ZXP2C5.

    • Crossref
    • Export Citation
  • Butt, M. J., and M. Bilal, 2011: Application of snowmelt runoff model for water resource management. Hydrol. Processes, 25, 37353747, https://doi.org/10.1002/hyp.8099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castle, S. L., B. F. Thomas, J. T. Reager, M. Rodell, S. C. Swenson, and J. S. Famiglietti, 2014: Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett., 41, 5904, https://doi.org/10.1002/2014GL061055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, Y., 2004: Biostatistics 201: Linear regression analysis. Singapore Med. J., 45, 5561.

  • Chen, C., B. He, L. Guo, Y. Zhang, X. Xie, and Z. Chen, 2018: Identifying critical climate periods for vegetation growth in the Northern Hemisphere. J. Geophys. Res. Biogeosci., 123, 25412552, https://doi.org/10.1029/2018JG004443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., W. Zhang, N. Nie, and Y. Guo, 2019: Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Sci. Total Environ., 649, 372387, https://doi.org/10.1016/j.scitotenv.2018.08.352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., J. Li, Z. Zhang, and S. Ni, 2014: Long-term groundwater variations in Northwest India from satellite gravity measurements. Global Planet. Change, 116, 130138, https://doi.org/10.1016/j.gloplacha.2014.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, and B. D. Tapley, 2010: The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour. Res., 46, W12526, https://doi.org/10.1029/2010WR009383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., R. De Jeu, Y. Liu, G. Van der Werf, and A. Dolman, 2014: Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sens. Environ., 140, 330338, https://doi.org/10.1016/j.rse.2013.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Z. Su, Y. Ma, S. Liu, Q. Yu, and Z. Xu, 2014: Development of a 10-year (2001-2010) 0.1 data set of land-surface energy balance for mainland China. Atmos. Chem. Phys., https://doi.org/10.5194/acp-14-13097-2014.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., W. Jiang, W. Wang, Y. Deng, B. He, and K. Jia, 2017: The impact of precipitation deficit and urbanization on variations in water storage in the Beijing-Tianjin-Hebei urban agglomeration. Remote Sens., 10, 4, https://doi.org/10.3390/rs10010004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z.-H., S. E. Grasby, and K. G. Osadetz, 2002: Predicting average annual groundwater levels from climatic variables: an empirical model. J. Hydrol., 260, 102117, https://doi.org/10.1016/S0022-1694(01)00606-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., X. Zeng, and R. E. Dickinson, 2001: The Common Land Model (CLM). Spring Meeting, Boston, MA, Amer. Geophys. Union, Abstract B51B-13.

  • Danielson, J. J., and D. B. Gesch, 2011: Global multi-resolution terrain elevation data 2010 (GMTED2010). USGS Open-File Rep. 2011-1073, 26 pp., https://doi.org/10.3133/ofr20111073.

    • Crossref
    • Export Citation
  • Driscoll, P., F. Lecky, and M. Crosby, 2000: An introduction to everyday statistics—1. Emerg. Med. J., 17, 205211, https://doi.org/10.1136/emj.17.3.205-a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durbin, J., and G. S. Watson, 1971: Testing for serial correlation in least squares regression. III. Biometrika, 58, 119, https://doi.org/10.2307/2334313.

    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978: Climate, soil, and vegetation: 1. Introduction to water balance dynamics. Water Resour. Res., 14, 705712, https://doi.org/10.1029/WR014i005p00705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, A. C., and W. A. Woodward, 2007: Statistical Analysis Quick Reference Guidebook: With SPSS Examples. Sage Publications, 280 pp.

    • Crossref
    • Export Citation
  • Famiglietti, J. S., and Coauthors, 2011: Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett., 38, L03403, https://doi.org/10.1029/2010GL046442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felfelani, F., Y. Wada, L. Longuevergne, and Y. N. Pokhrel, 2017: Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE. J. Hydrol., 553, 105118, https://doi.org/10.1016/j.jhydrol.2017.07.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, W., M. Zhong, J. M. Lemoine, R. Biancale, H. T. Hsu, and J. Xia, 2013: Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res., 49, 21102118, https://doi.org/10.1002/wrcr.20192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, A., 2013: Discovering Statistics Using IBM SPSS Statistics. 4th ed. Sage Publications, 915 pp.

  • Frappart, F., G. Ramillien, and J. Ronchail, 2013: Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int. J. Climatol., 33, 30293046, https://doi.org/10.1002/joc.3647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J. G., Y. L. Zhang, L. S. Liu, and Z. F. Wang, 2014: Climate change as the major driver of alpine grasslands expansion and contraction: A case study in the Mt. Qomolangma (Everest) National Nature Preserve, southern Tibetan Plateau. Quat. Int., 336, 108116, https://doi.org/10.1016/j.quaint.2013.09.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, H., and Coauthors, 2018: Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeol. J., 26, 14171427, https://doi.org/10.1007/s10040-018-1768-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations – The CRU TS3.10 Dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Z., and Coauthors, 2019: Detection of large-scale groundwater storage variability over the karstic regions in Southwest China. J. Hydrol., 569, 409422, https://doi.org/10.1016/j.jhydrol.2018.11.071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphrey, V., L. Gudmundsson, and S. I. Seneviratne, 2016: Assessing global water storage variability from GRACE: Trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys., 37, 357395, https://doi.org/10.1007/s10712-016-9367-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, S., and G. Feng, 2013: Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Global Planet. Change, 106, 2030, https://doi.org/10.1016/j.gloplacha.2013.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, S., D. P. Chambers, and B. D. Tapley, 2010: Hydrological and oceanic effects on polar motion from GRACE and models. J. Geophys. Res., 115, B02403, https://doi.org/10.1029/2009JB006635.

    • Search Google Scholar
    • Export Citation
  • Kendall, M., 1975: Multivariate Analysis. Charles Griffin, 210 pp.

  • Kim, H., P. J. F. Yeh, T. Oki, and S. Kanae, 2009: Role of rivers in the seasonal variations of terrestrial water storage over global basins. Geophys. Res. Lett., 36, L17402, https://doi.org/10.1029/2009GL039006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.

  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liesch, T., and M. Ohmer, 2016: Comparison of GRACE data and groundwater levels for the assessment of groundwater depletion in Jordan. Hydrogeol. J., 24, 15471563, https://doi.org/10.1007/s10040-016-1416-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D., and Coauthors, 2015: Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China’s Yangtze River Basin. Remote Sens. Environ., 168, 177193, https://doi.org/10.1016/j.rse.2015.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D., and Coauthors, 2016: Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Sci. Rep., 6, 24 398, https://doi.org/10.1038/srep24398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenzo-Lacruz, J., C. Garcia, and E. Morán-Tejeda, 2017: Groundwater level responses to precipitation variability in Mediterranean insular aquifers. J. Hydrol., 552, 516531, https://doi.org/10.1016/j.jhydrol.2017.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Coauthors, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. AGU Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract OS31C-1292.

  • Mo, X., J. J. Wu, Q. Wang, and H. Zhou, 2016: Variations in water storage in China over recent decades from GRACE observations and GLDAS. Nat. Hazards Earth Syst. Sci., 3, 32513286, https://doi.org/10.5194/nhessd-3-3251-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muskett, R. R., and V. E. Romanovsky, 2009: Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environ. Res. Lett., 4, 045009, https://doi.org/10.1088/1748-9326/4/4/045009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndehedehe, C., J. Awange, N. Agutu, M. Kuhn, and B. Heck, 2016: Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Adv. Water Resour., 88, 211230, https://doi.org/10.1016/j.advwatres.2015.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, N., W. Zhang, Z. Zhang, H. Guo, and N. Ishwaran, 2016: Reconstructed terrestrial water storage change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the latest GRACE and GLDAS products. Water Resour. Manage., 30, 279294, https://doi.org/10.1007/s11269-015-1161-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 1068, https://doi.org/10.1126/science.1128845.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Osbourne, J. W., and E. Waters, 2002: Four Assumptions of Multiple Regression That Researchers Should Always Test. Pract. Assess., Res. Eval., 8 (2), 15.

    • Search Google Scholar
    • Export Citation
  • Pallant, J., 2001: SPSS Survival Manual: A Step-by-Step Guide to Data Analysis Using SPSS for Windows. Open University Press, 286 pp.

  • Pan, Y., C. Zhang, H. Gong, P. J.-F. Yeh, Y. Shen, Y. Guo, Z. Huang, and X. Li, 2017: Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophys. Res. Lett., 44, 190199, https://doi.org/10.1002/2016GL071287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parry, S., R. L. Wilby, C. Prudhomme, and P. J. Wood, 2016: A systematic assessment of drought termination in the United Kingdom. Hydrol. Earth Syst. Sci., 20, 42654281, https://doi.org/10.5194/hess-20-4265-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramillien, G., F. Frappart, and L. Seoane, 2014: Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens., 6, 73797405, https://doi.org/10.3390/rs6087379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. S. Famiglietti, J. Chen, S. I. Seneviratne, P. Viterbo, S. Holl, and C. R. Wilson, 2004a: Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31, 183213, https://doi.org/10.1029/2004GL020873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004b: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 999, https://doi.org/10.1038/nature08238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Save, H., S. Bettadpur, and B. D. Tapley, 2016: High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth, 121, 75477569, https://doi.org/10.1002/2016JB013007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., L. Longuevergne, and D. Long, 2012: Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res., 48, W04520, https://doi.org/10.1029/2011WR011312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., and Coauthors, 2016: Global Evaluation of New GRACE Mascon Products for Hydrologic Applications. Water Resour. Res., 52, 94129429, https://doi.org/10.1002/2016WR019494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., and Coauthors, 2018: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA, 115, E1080E1089, https://doi.org/10.1073/pnas.1704665115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shamsudduha, M., R. G. Taylor, D. Jones, L. Longuevergne, M. Owor, and C. Tindimugaya, 2017: Recent changes in terrestrial water storage in the Upper Nile Basin: An evaluation of commonly used gridded GRACE products. Hydrol. Earth Syst. Sci., 21, 45334549, https://doi.org/10.5194/hess-2017-146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Somorowska, U., 2017: Soil water storage in Poland over the years 2000-2015 in response to precipitation variability as retrieved from GLDAS Noah simulations. Geogr. Pol., 90, 5364, https://doi.org/10.7163/GPol.0078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soni, A., and T. H. Syed, 2015: Diagnosing land water storage variations in major Indian River basins using GRACE observations. Global Planet. Change, 133, 263271, https://doi.org/10.1016/j.gloplacha.2015.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strassberg, G., B. R. Scanlon, and D. Chambers, 2009: Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resour. Res., 45, W05410, https://doi.org/10.1029/2008WR006892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson, 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, https://doi.org/10.1029/2006WR005779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thode, H. C., 2002: Testing for Normality. CRC Press, 479 pp.

  • Trautmann, T., S. Koirala, N. Carvalhais, A. Eicker, M. Fink, C. Niemann, and M. Jung, 2018: Understanding terrestrial water storage variations in northern latitudes across scales. Hydrol. Earth Syst. Sci., 22, 40614082, https://doi.org/10.5194/hess-22-4061-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tregoning, P., S. McClusky, A. V. Dijk, R. S. Crosbie, and J. L. Peña-Arancibia, 2012: Assessment of GRACE satellites for groundwater estimation in Australia. CSIRO Rep., 82 pp., http://hdl.handle.net/102.100.100/101600?index=1.

  • Tucker, C. J., and Coauthors, 2005: An extended AVHRR 8-m NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, https://doi.org/10.1080/01431160500168686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahr, J., M. Molenaar, and F. Bryan, 1998: Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103, 30 20530 229, https://doi.org/10.1029/98JB02844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, 2004: Time-variable gravity from GRACE: First results. Geophys. Res. Lett., 31, L11501, https://doi.org/10.1029/2004GL019779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watkins, M. M., D. N. Wiese, D. N. Yuan, C. Boening, and F. W. Landerer, 2015: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth, 120, 26482671, https://doi.org/10.1002/2014JB011547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiese, D. N., F. W. Landerer, and M. M. Watkins, 2016: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res., 52, 74907502, https://doi.org/10.1002/2016WR019344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, R., X. He, Y. Zhang, V. G. Ferreira, and L. Chang, 2015: Monitoring groundwater variations from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the Mid-Atlantic region of the United States. Remote Sens., 7, 686703, https://doi.org/10.3390/rs70100686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C.-Y., 2001: Statistical analysis of parameters and residuals of a conceptual water balance model – Methodology and case study. Water Resour. Manage., 15, 7592, https://doi.org/10.1023/A:1012559608269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., S. Kang, X. Chen, H. Wu, X. Wang, and Z. Su, 2018: Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ., 639, 12201232, https://doi.org/10.1016/j.scitotenv.2018.05.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, T., and Coauthors, 2013: Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage. Global Planet. Change, 109, 3037, https://doi.org/10.1016/j.gloplacha.2013.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., D. Long, H. Guan, B. R. Scanlon, C. T. Simmons, L. Jiang, and X. Xu, 2014: GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. J. Geophys. Res. Biogeosci., 119, 22452260, https://doi.org/10.1002/2014JG002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2017: Lags in hydrologic recovery following an extreme drought: Assessing the roles of climate and catchment characteristics. Water Resour. Res., 53, 48214837, https://doi.org/10.1002/2017WR020683.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1655 466 25
PDF Downloads 1411 395 7