Uncertainties of GPM Microwave Imager Precipitation Estimates Related to Precipitation System Size and Intensity

Abishek Adhikari Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Abishek Adhikari in
Current site
Google Scholar
PubMed
Close
,
Chuntao Liu Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Chuntao Liu in
Current site
Google Scholar
PubMed
Close
, and
Lindsey Hayden Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Lindsey Hayden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The uncertainties in the version 5 Global Precipitation Measurement (GPM) Microwave Imager (GMI) precipitation retrievals are evaluated via comparison with the radar–radiometer (so-called “Combined”) retrievals between 40°S and 40°N. Results show the precipitation estimates are close (~7% GMI overestimation) globally. However, some specific regions, such as central Africa, the Amazon, the Himalayan region, and the tropical eastern Pacific, show a large overestimation (up to 50%) in GMI retrievals when compared to Combined retrievals. The uncertainties are further evaluated based on precipitation system properties, such as size and intensity of the system. GMI tends to underestimate precipitation volume when the system is relatively warm (>250 K) and small (<200 km2) due to the lack of ice scattering signatures. However, for large systems (>2000 km2), GMI-derived precipitation is typically higher than Combined over all surfaces. Based on the system properties, a simple bias correction methodology is proposed to implement in the Goddard Profiling Algorithm (GPROF) to reduce GMI biases. GMI precipitation volume is adjusted in each precipitation system based on the size and minimum 89 GHz polarization-corrected temperature (PCT) over land and ocean separately. The overall GMI bias is reduced to 3%, with significant improvement over land. The GMI biases (up to 50%) over the previously mentioned regions are significantly or partially removed, becoming less than 20%. This method also shows effectiveness in removing zonal and seasonal biases from GMI estimates. These results suggest the importance of utilizing the information of whole precipitation systems instead of individual pixels in the precipitation retrieval.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Abishek Adhikari, aadhikari1@islander.tamucc.edu

Abstract

The uncertainties in the version 5 Global Precipitation Measurement (GPM) Microwave Imager (GMI) precipitation retrievals are evaluated via comparison with the radar–radiometer (so-called “Combined”) retrievals between 40°S and 40°N. Results show the precipitation estimates are close (~7% GMI overestimation) globally. However, some specific regions, such as central Africa, the Amazon, the Himalayan region, and the tropical eastern Pacific, show a large overestimation (up to 50%) in GMI retrievals when compared to Combined retrievals. The uncertainties are further evaluated based on precipitation system properties, such as size and intensity of the system. GMI tends to underestimate precipitation volume when the system is relatively warm (>250 K) and small (<200 km2) due to the lack of ice scattering signatures. However, for large systems (>2000 km2), GMI-derived precipitation is typically higher than Combined over all surfaces. Based on the system properties, a simple bias correction methodology is proposed to implement in the Goddard Profiling Algorithm (GPROF) to reduce GMI biases. GMI precipitation volume is adjusted in each precipitation system based on the size and minimum 89 GHz polarization-corrected temperature (PCT) over land and ocean separately. The overall GMI bias is reduced to 3%, with significant improvement over land. The GMI biases (up to 50%) over the previously mentioned regions are significantly or partially removed, becoming less than 20%. This method also shows effectiveness in removing zonal and seasonal biases from GMI estimates. These results suggest the importance of utilizing the information of whole precipitation systems instead of individual pixels in the precipitation retrieval.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Abishek Adhikari, aadhikari1@islander.tamucc.edu
Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Carr, N., and Coauthors, 2015: The influence of surface and precipitation characteristics on TRMM Microwave Imager rainfall retrieval uncertainty. J. Hydrometeor., 16, 15961614, https://doi.org/10.1175/JHM-D-14-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359, 373380, https://doi.org/10.1038/359373a0.

  • Costa, I. C., L. A. T. Machado, and C. Kummerow, 2018: An examination of microwave rainfall retrieval biases and their characteristics over the Amazon. Atmos. Res., 213, 323330, https://doi.org/10.1016/j.atmosres.2018.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015: The global precipitation measurement (GPM) microwave imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 34523462, https://doi.org/10.1109/JSTARS.2015.2403303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., N. C. Grody, and G. F. Marks, 1994: Effects of surface conditions on rain identification using the DMSP-SSM/I. Remote Sens. Rev., 11, 195209, https://doi.org/10.1080/02757259409532265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., E. A. Smith, W. Berg, and G. J. Huffman, 1998: A screening methodology for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55, 15831600, https://doi.org/10.1175/1520-0469(1998)055<1583:ASMFPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-Era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, https://doi.org/10.1109/TGRS.2012.2199121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R., and G. M. Heymsfield, 1991: Microphysical and radiative characteristics of convective clouds during COHMEX. J. Appl. Meteor., 30, 98116, https://doi.org/10.1175/1520-0450(1991)030<0098:MARCOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalan, K., N. Y. Wang, R. Ferraro, and C. Liu, 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, https://doi.org/10.1175/2010JTECHA1454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. Mclaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435, https://doi.org/10.1029/91JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8, 12841295, https://doi.org/10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, https://doi.org/10.5194/hess-15-1109-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, https://doi.org/10.1109/36.536538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, https://doi.org/10.1175/2010JTECHA1468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N. Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., 2016: GPM precipitation feature database. Tech. Rep., 15 pp., http://atmos.tamucc.edu/trmm/data/document/GPM_database_description_1.0_201601.pdf.

  • Liu, C., and E. J. Zipser, 2009: “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767779, https://doi.org/10.1175/2008JCLI2641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. Zipser, 2014: Differences between the surface precipitation estimates from the TRMM Precipitation Radar and passive microwave radiometer version 7 products. J. Hydrometeor., 15, 21572175, https://doi.org/10.1175/JHM-D-14-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, https://doi.org/10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. Iguchi, R. Oki, and M. Kachi, 2002: Comparison of rainfall products derived from TRMM microwave imager and precipitation radar. J. Appl. Meteor., 41, 849862, https://doi.org/10.1175/1520-0450(2002)041<0849:CORPDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mugnai, A., and E. A. Smith, 1988: Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part I: Model description. J. Appl. Meteor., 27, 10551073, https://doi.org/10.1175/1520-0450(1988)027<1055:RTTSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and G. Skofronick-Jackson, 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, https://doi.org/10.1016/j.atmosres.2012.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and C. D. Kummerow, 2004: An examination of version-5 rainfall estimates from the TRMM Microwave Imager, Precipitation Radar, and rain gauges on global, regional, and storm scales. J. Appl. Meteor., 43, 10161036, https://doi.org/10.1175/1520-0450(2004)043<1016:AEOVRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., 1982: Passive microwave remote sensing of the Earth from space—A review. Proc. IEEE, 70, 728750, https://doi.org/10.1109/PROC.1982.12380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., H. Masunaga, and GPM Combined Radar-Radiometer Algorithm Team, 2016: GPM combined radar-radiometer precipitation algorithm theoretical basis document (version 4). Tech. Rep., 63 pp., https://pmm.nasa.gov/sites/default/files/document_files/Combined_algorithm_ATBD.V04.rev_.pdf.

  • Petersen, W. A., P. E. Kirstetter, J. Wang, D. B. Wolff, and A. Tokay, 2019: The GPM GV Program. Tech. Doc., 21 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190000321.pdf.

  • Petković, V., and C. D. Kummerow, 2015: Performance of the GPM passive microwave retrieval in the Balkan flood event of 2014. J. Hydrometeor., 16, 25012518, https://doi.org/10.1175/JHM-D-15-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., 2010: Precipitation retrieval from space: An overview. C. R. Geosci., 342, 380389, https://doi.org/10.1016/j.crte.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., 1984: Satellite passive microwave rain rate measurement over croplands during spring, summer and fall. J. Climate Appl. Meteor., 23, 15531562, https://doi.org/10.1175/1520-0450(1984)023<1553:SPMRRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. Goodman, and R. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and Characteristics of the Scattering Signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824, https://doi.org/10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C., C. Liu, and E. Zipser, 2013: A climatology of tropical congestus using CloudSat. J. Geophys. Res. Atmos., 118, 64786492, https://doi.org/10.1002/jgra.50573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., C. Liu, R. Ferraro, D. Wolff, E. Zipser, and C. Kummerow, 2009: TRMM 2A12 land precipitation product - Status and future plans. J. Meteor. Soc. Japan, 87A, 237253, https://doi.org/10.2151/jmsj.87A.237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67, 12261232, https://doi.org/10.1175/1520-0477(1986)067<1226:SCOPMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., J. S. Theon, W. E. Shenk, L. J. Allison, and E. B. Rodgers, 1976: Meteorological interpretations of the images from the Nimbus 5 electrically scanned microwave radiometer. J. Appl. Meteor., 15, 166172, https://doi.org/10.1175/1520-0450(1976)015<0166:MIOTIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. T. C. Chang, and L. S. Chiu, 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, https://doi.org/10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 566 132 7
PDF Downloads 564 126 11