Evaluation of X-Band Dual-Polarization Radar-Rainfall Estimates from OLYMPEX

Yagmur Derin Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Yagmur Derin in
Current site
Google Scholar
PubMed
Close
,
Emmanouil Anagnostou Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Emmanouil Anagnostou in
Current site
Google Scholar
PubMed
Close
,
Marios Anagnostou Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, and Department of Environmental Sciences, Ionian University, Zakynthos, Greece

Search for other papers by Marios Anagnostou in
Current site
Google Scholar
PubMed
Close
, and
John Kalogiros Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece

Search for other papers by John Kalogiros in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The difficulty of representing high rainfall variability over mountainous areas using ground-based sensors is an open problem in hydrometeorology. Observations from locally deployed dual-polarization X-band radar have the advantage of providing multiparameter measurements near ground that carry significant information useful for estimating drop size distribution (DSD) and surface rainfall rate. Although these measurements are at fine spatiotemporal scale and are less inhibited by complex topography than operational radar network observations, uncertainties in their estimates necessitate error characterization based upon in situ measurements. During November 2015–February 2016, a dual-polarized Doppler on Wheels (DOW) X-band radar was deployed on the Olympic Peninsula of Washington State as part of NASA’s Olympic Mountain Experiment (OLYMPEX). In this study, rain gauges and disdrometers from a dense network positioned within 40 km of DOW are used to evaluate the self-consistency and accuracy of the attenuation and brightband/vertical profile corrections, and rain microphysics estimation by SCOP-ME, an algorithm that uses optimal parameterization and best-fitted functions of specific attenuation coefficients and DSD parameters with radar polarimetric measurements. In addition, the SCOP-ME precipitation microphysical retrievals of median volume diameter D0 and normalized intercept parameter NW are evaluated against corresponding parameters derived from the in situ disdrometer spectra observations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emmanouil Anagnostou, manos@uconn.edu

Abstract

The difficulty of representing high rainfall variability over mountainous areas using ground-based sensors is an open problem in hydrometeorology. Observations from locally deployed dual-polarization X-band radar have the advantage of providing multiparameter measurements near ground that carry significant information useful for estimating drop size distribution (DSD) and surface rainfall rate. Although these measurements are at fine spatiotemporal scale and are less inhibited by complex topography than operational radar network observations, uncertainties in their estimates necessitate error characterization based upon in situ measurements. During November 2015–February 2016, a dual-polarized Doppler on Wheels (DOW) X-band radar was deployed on the Olympic Peninsula of Washington State as part of NASA’s Olympic Mountain Experiment (OLYMPEX). In this study, rain gauges and disdrometers from a dense network positioned within 40 km of DOW are used to evaluate the self-consistency and accuracy of the attenuation and brightband/vertical profile corrections, and rain microphysics estimation by SCOP-ME, an algorithm that uses optimal parameterization and best-fitted functions of specific attenuation coefficients and DSD parameters with radar polarimetric measurements. In addition, the SCOP-ME precipitation microphysical retrievals of median volume diameter D0 and normalized intercept parameter NW are evaluated against corresponding parameters derived from the in situ disdrometer spectra observations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emmanouil Anagnostou, manos@uconn.edu
Save
  • Anagnostou, E. N., and W. F. Krajewski, 1999: Uncertainty quantification of mean-areal radar-rainfall estimates. J. Atmos. Oceanic Technol., 16, 206215, https://doi.org/10.1175/1520-0426(1999)016<0206:UQOMAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., M. N. Anagnostou, W. F. Krajewski, A. Kruger, and B. J. Miriovsky, 2004: High-resolution rainfall estimation from X-band polarimetric radar measurements. J. Hydrometeor., 5, 110128, https://doi.org/10.1175/1525-7541(2004)005<0110:HREFXP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., M. Grecu, and M. N. Anagnostou, 2006: X-band polarimetric radar rainfall measurement in Keys area microphysics project. J. Atmos. Sci., 63, 187203, https://doi.org/10.1175/JAS3592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. N., E. N. Anagnostou, and J. Vivekananda, 2006: Correction for rain-path specific and differential attenuation of X-band dual-polarization observations. IEEE Trans. Geosci. Remote Sens., 44, 24702480, https://doi.org/10.1109/TGRS.2006.873204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. N., E. N. Anagnostou, J. Vivekanandan, and F. L. Ogden, 2007: Comparison of raindrop size distribution estimates from X-band and S-band polarimetric observations. IEEE Geosci. Temore Sens. Lett., 4, 601605, https://doi.org/10.1109/LGRS.2007.903061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. N., J. Kalogiros, E. N. Anagnostou, and A. Papadopoulos, 2009: Experimental results on rainfall estimation in complex terrain with a mobile X-band polarimetric weather radar. Atmos. Res., 94, 579595, https://doi.org/10.1016/j.atmosres.2009.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. N., J. Kalogiros, E. N. Anagnostou, M. Tarolli, A. Papadopoulos, and M. Borga, 2010: Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins. J. Hydrol., 394, 416, https://doi.org/10.1016/j.jhydrol.2010.06.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. N., J. Kalogiros, F. S. Marzano, E. N. Anagnostou, M. Montopoli, and E. Picciotti, 2013: Performance evaluation of a new dual-polarization microphysical algorithm based on long-term X-band radar and disdrometer observations. J. Hydrometeor., 14, 560576, https://doi.org/10.1175/JHM-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. N., and Coauthors, 2018: Advancing precipitation estimation and streamflow simulations in complex terrain with X-band dual-polarization radar observations. Remote Sens., 10, 1258, https://doi.org/10.3390/rs10081258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekron, 1973: Early foundations of the measurement of rainfall by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 86–97, https://doi.org/10.1007/978-1-935704-15-7_12.

    • Crossref
    • Export Citation
  • Barros, A. P., and Coauthors, 2014: NASA GPM-Ground Validation Integrated Precipitation and Hydrology Experiment 2014 Science Plan. Duke University Tech. Rep., 64 pp., https://doi.org/10.7924/G8CC0XMR.

    • Crossref
    • Export Citation
  • Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, https://doi.org/10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 662 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., K. Droegemeier, and D. McLaughlin, 2006: Collaborative adaptive sensing of the atmosphere: New radar system for improving analysis and forecasting of surface weather conditions. Transp. Res. Rec., 1948, 144151, https://doi.org/10.1177/0361198106194800116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnic, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629, https://doi.org/10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., A. Hou, E. Smith, V. N. Bringi, S. A. Rutledge, E. Gorgucci, W. A. Petersen, and G. S. Jackson, 2008: Potential role of dual-polarization radar in the validation of satellite precipitation measurements: Rationale and opportunities. Bull. Amer. Meteor. Soc., 89, 11271145, https://doi.org/10.1175/2008BAMS2177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Y. Wang, and H. Chen, 2012: The CASA quantitative precipitation estimation system: A five year validation study. Nat. Hazards Earth Syst. Sci., 12, 28112820, https://doi.org/10.5194/nhess-12-2811-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., S. Lim, V. Chandrasekar, and B.-J. Jang, 2017: Urban hydrological application of dual-polarization X-band radar: Case study in Korea. J. Hydrol. Eng., 22, E5016001, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derin, Y., E. N. Anagnostou, M. N. Anagnostou, J. Kalogiros, D. Casella, A. C. Marra, G. Panegrossi, and P. Sano, 2018: Passive microwave rainfall error analysis using high-resolution X-band dual-polarization radar observations in complex terrain. IEEE Trans. Geosci. Remote Sens., 56, 25652586, https://doi.org/10.1109/TGRS.2017.2763622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frech, M., M. Hagen, and T. Mammen, 2017: Monitoring the absolute calibration of a polarimetric weather radar. J. Atmos. Oceanic Technol., 34, 599615, https://doi.org/10.1175/JTECH-D-16-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., V. Chandrasekar, and L. Baldini, 2006: Correction of X-band radar observation for propagation effects based on the self-consistency principle. J. Atmos. Oceanic Technol., 23, 16681681, https://doi.org/10.1175/JTECH1950.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., J. Wurman, S. Brodzik, and A. Frambach, 2018: GPM Ground Validation Doppler on Wheels (DOW) OLYMPEX V2. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 20 January 2019, https://doi.org/10.5067/GPMGV/OLYMPEX/DOW/DATA201.

    • Crossref
    • Export Citation
  • Huffman, G., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, and E. F. Stocker, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G., R. F. Adler, D. T. Bolvin, G. Gu, and E. J. Nelkin, 2010: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22.

    • Crossref
    • Export Citation
  • Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286297, https://doi.org/10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, J. R., E. J. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2013a: Optimum estimation of rain microphysical parameters using X-band dual-polarization radar observables. IEEE Trans. Geosci. Remote Sens., 51, 30633076, https://doi.org/10.1109/TGRS.2012.2211606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2013b: Correction of polarimetric radar reflectivity measurement and rainfall estimates for apparent vertical profile in stratiform rain. J. Appl. Meteor. Climatol., 52, 11701186, https://doi.org/10.1175/JAMC-D-12-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2014: Evaluation of a new polarimetric algorithm for rain-path attenuation correction of X-band radar observations against disdrometer. IEEE Trans. Geosci. Remote Sens., 52, 13691380, https://doi.org/10.1109/TGRS.2013.2250979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D.-S., and M. Maki, 2012: Validation of composite polarimetric parameters and rainfall rates from an X-band dual-polarization radar network in the Tokyo metropolitan area. Hydrol. Res. Lett., 6, 7681, https://doi.org/10.3178/hrl.6.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D.-S., M. Maki, and D. Lee, 2008: Correction of X-band radar reflectivity and differential reflectivity for rain attenuation using differential phase. J. Atmos. Res., 90, 19, https://doi.org/10.1016/j.atmosres.2008.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D.-S., M. Maki, D. Lee, 2010: Retrieval of three-dimensional raindrop size distribution using X-band polarimetric radar data. J. Atmos. Oceanic Technol., 27, 12651285, https://doi.org/10.1175/2010JTECHA1407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koffi, A. K., M. Gosset, E.-P. Zahiri, A. D. Ochou, M. Kacou, F. Cazenave, and P. Assamoi, 2014: Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa. Atmos. Res., 143, 438461, https://doi.org/10.1016/j.atmosres.2014.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, S., R. Cifelli, V. Chandrasekar, and S. Y. Matrosov, 2013: Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the hydrometeorology testbed. J. Atmos. Oceanic Technol., 30, 21082120, https://doi.org/10.1175/JTECH-D-12-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maki, M., and Coauthors, 2010: X-band polarimetric radar networks in urban areas. Proc. Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, Administria Nationala de Meteorologie, 202–206.

  • Matrosov, S. Y., R. A. Kropfli, R. F. Reinking, and B. E. Martner, 1999: Prospects for measuring rainfall using propagation differential phase in X- and Ka-radar bands. J. Appl. Meteor., 38, 766776, https://doi.org/10.1175/1520-0450(1999)038<0766:PFMRUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., K. A. Clark, B. E. Martner, and A. Tokay, 2002: C-band polarimetric radar measurements of rainfall. J. Appl. Meteor., 41, 941952, https://doi.org/10.1175/1520-0450(2002)041<0941:XBPRMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., D. E. Kingsmill, B. E. Martner, and F. M. Ralph, 2005: The utility of X-band radar for quantitative estimates of rainfall parameters. J. Hydrometeor., 6, 248262, https://doi.org/10.1175/JHM424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, P. C. Kennedy, S. W. Nesbit, S. A. Rutledge, V. N. Bringi, and B. E. Martner, 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at C- and S-band radar frequencies. J. Atmos. Oceanic Technol., 23, 952963, https://doi.org/10.1175/JTECH1887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, and D. Gochis, 2013: Measurements of heavy convective rainfall in the presence of hail in flood-prone areas using an X-band polarimetric radar. J. Appl. Meteor. Climatol., 52, 395407, https://doi.org/10.1175/JAMC-D-12-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., D. Pepyne, B. Philips, J. Kurose, M. Zink, D. Westbrook, and P. Kollias, 2009: Shirt-wavelength technology and potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, https://doi.org/10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, K. V., and Coauthors, 2016: Deployment and performance analyses of high-resolution Iowa XPOL radar system during the NASA IFloodS campaign. J. Hydrometeor., 17, 455479, https://doi.org/10.1175/JHM-D-15-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-G., V. N. Bringi, V. Chandrasekar, M. Maki, and K. Iwanami, 2005a: Correction of radar reflectivity and differential reflectivity for rain attenuation at X-band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22, 16211632, https://doi.org/10.1175/JTECH1803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-G., M. Maki, K. Iwanami, V. N. Bringi, and V. Chandrasekar, 2005b: Correction of radar reflectivity and differential reflectivity for rain attenuation at X-band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 16331655, https://doi.org/10.1175/JTECH1804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. and P. Gatlin, 2017: GPM Ground Validation Micro Rain Radar (MRR) OLYMPEX. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 20 January 2019, https://doi.org/10.5067/GPMGV/OLYMPEX/MRR/DATA201.

    • Crossref
    • Export Citation
  • Petersen, W., D. B. Wolff, J. Wang, and A. Tokay, 2017a: GPM Ground Validation Met One Rain Gauge Pairs OLYMPEX. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 20 January 2019, https://doi.org/10.5067/GPMGV/OLYMPEX/GAUGES/DATA201.

    • Crossref
    • Export Citation
  • Petersen, W., A. Tokay, P. N. Gatlin and M. T. Wingo, 2017b: GPM Ground Validation Autonomous Parsivel Unit (APU) OLYMPEX. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 20 January 2019, https://doi.org/10.5067/GPMGV/OLYMPEX/APU/DATA301.

    • Crossref
    • Export Citation
  • Petersen, W., R. Houze, and L. McCurdie, 2018: GPM Ground Validation OLYMPEX Field Campaign Data Collection. Subset used: DOW. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 20 January 2019, https://doi.org/10.5067/GPMGV/OLYMPEX/DATA101.

    • Crossref
    • Export Citation
  • Shi, Z., H. Chen, V. Chandrasekar, and J. He, 2018: Deployment and performance of an X-band dual-polarization radar during the Southern China monsoon rainfall experiment. Atmosphere, 9, 4, https://doi.org/10.3390/atmos9010004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., J. Lavabre, S. Diss, P. Tabary, and G. Scialom, 2007: HYDRIX radar in FRAMEA – Evaluation of an X band polarimetric radar using a quasi-co located S band radar and a raingauge network. Proc. Int. Symp. on X Band Weather Radar Network, Tsukuba, Japan, National Research Institute for Earth Science and Disaster Prevention, 7–10, http://www.novimet.com/download/Testud%20et%20al_Japan_2007.pdf.

  • Thurai, M., K. V. Mishra, V. N. Bringi, and W. F. Krajewski, 2017: Initial results of a new composite-weighted algorithm for dual-polarized X-band rainfall estimation. J. Hydrometeor., 18, 10811100, https://doi.org/10.1175/JHM-D-16-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, https://doi.org/10.2151/jmsj.87A.137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2010: Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. J. Atmos. Oceanic Technol., 27, 16651676, https://doi.org/10.1175/2010JTECHA1419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshikawa, E., and Coauthors, 2010: Development and initial observation of high-resolution volume-scanning radar for meteorological application. IEEE Trans. Geosci. Remote Sens., 48, 32253235, https://doi.org/10.1109/TGRS.2010.2045762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, N., N. Gaussiat, and P. Tabary, 2018: Polarimetric X-band weather radars for quantitative precipitation estimation in mountainous regions. Quart. J. Roy. Meteor. Soc., 144, 26032619, https://doi.org/10.1002/qj.3366.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1755 919 21
PDF Downloads 746 164 12