• Abebe, A. J., D. P. Solomatine, and R. G. W. Venneker, 2000: Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events. Hydrol. Sci. J., 45, 425436, https://doi.org/10.1080/02626660009492339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allard, D., and P. Monestiez, 1999: Geostatistical segmentation of rainfall data. geoENV II — Geostatistics for Environmental Applications, J. Gómez-Hernández, A. Soares, and R. Froidevaux, Eds., Quantitative Geology and Geostatistics Series, Vol. 10, Springer, 139–150, https://doi.org/10.1007/978-94-015-9297-0_12.

    • Crossref
    • Export Citation
  • Apipattanavis, S., G. Podesta, B. Rajagopalan, and R. W. Katz, 2007: A semiparametric multivariate and multisite weather generator. Water Resour. Res., 43, W11401, https://doi.org/10.1029/2006WR005714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ASCE, 1996: Hydrology Handbook. ASCE, 784 pp.

  • Azman, M. A.-Z., R. Zakaria, and N. F. A. Radi, 2015: Estimation of missing rainfall data in Pahang using modified spatial interpolation weighting methods. AIP Conf. Proc., 1643, 6572, https://doi.org/10.1063/1.4907426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bárdossy, A., and G. Pegram, 2014: Infilling missing precipitation records - A comparison of a new copula-based method with other techniques. J. Hydrol., 519, 11621170, https://doi.org/10.1016/j.jhydrol.2014.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayabil, H. K., A. Fares, H. O. Sharif, D. T. Ghebreyesus, and H. A. Moreno, 2019: Effects of spatial and temporal data aggregation on the performance of the multi-radar multi-sensor system. J. Amer. Water Resour. Assoc., 55, 14921504, https://doi.org/10.1111/1752-1688.12799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, L., D. Allard, and G. Mariethoz, 2018a: Stochastic rainfall modeling at sub-kilometer scale. Water Resour. Res., 54, 41084130, https://doi.org/10.1029/2018WR022817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, L., M. Vrac, and G. Mariethoz, 2018b: Dealing with non-stationarity in sub-daily stochastic rainfall models. Hydrol. Earth Syst. Sci., 22, 59195933, https://doi.org/10.5194/hess-22-5919-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burhanuddin, S. N. Z. A., S. M. Deni, and N. M. Ramli, 2015: Geometric median for missing rainfall data imputation. AIP Conf. Proc., 1643, 113119, https://doi.org/10.1063/1.4907433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldera, H. P. G. M., V. R. P. C. Piyathisse, and K. D. W. Nandalal, 2016: A comparison of methods of estimating missing daily rainfall data. Eng.: J. Inst. Eng., Sri Lanka, 49 (4), 18, https://doi.org/10.4038/engineer.v49i4.7232.

    • Search Google Scholar
    • Export Citation
  • Caraway, N. M., J. L. McCreight, and B. Rajagopalan, 2014: Multisite stochastic weather generation using cluster analysis and k-nearest neighbor time series resampling. J. Hydrol., 508, 197213, https://doi.org/10.1016/j.jhydrol.2013.10.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chappell, A., L. J. Renzullo, T. H. Raupach, and M. Haylock, 2013: Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. J. Hydrol., 493, 105114, https://doi.org/10.1016/j.jhydrol.2013.04.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooke, R., and S. Mostaghimi, 1992: A microcomputer-based routine for obtaining mean watershed precipitation from point values. Comput. Geosci., 18, 823837, https://doi.org/10.1016/0098-3004(92)90027-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N., 1985: Fitting variogram models by weighted least squares. J. Int. Assoc. Math. Geol., 17, 563586, https://doi.org/10.1007/BF01032109.

  • Dembélé, M., F. Oriani, J. Tumbulto, G. Mariéthoz, and B. Schaefli, 2019: Gap-filling of daily streamflow time series using direct sampling in various hydroclimatic settings. J. Hydrol., 569, 573586, https://doi.org/10.1016/j.jhydrol.2018.11.076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demirel, M. C., J. Mai, G. Mendiguren, J. Koch, L. Samaniego, and S. Stisen, 2018: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrol. Earth Syst. Sci., 22, 12991315, https://doi.org/10.5194/hess-22-1299-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Piazza, A., F. Lo Conti, L. V. Noto, F. Viola, and G. La Loggia, 2011: Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf., 13, 396408, https://doi.org/10.1016/j.jag.2011.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H., C. Kilsby, P. O’connell, and A. Burton, 2005: A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. J. Hydrol., 308, 5066, https://doi.org/10.1016/j.jhydrol.2004.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grayson, R. B., G. Blöschl, A. W. Western, and T. A. McMahon, 2002: Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour., 25, 13131334, https://doi.org/10.1016/S0309-1708(02)00060-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilloteau, C., R. Roca, and M. Gosset, 2016: A multiscale evaluation of the detection capabilities of high-resolution satellite precipitation products in West Africa. J. Hydrometeor., 17, 20412059, https://doi.org/10.1175/JHM-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L. E., G. J. Mccabe, D. M. Wolock, and M. A. Ayers, 1991: Simulation of precipitation by weather type analysis. Water Resour. Res., 27, 493501, https://doi.org/10.1029/90WR02650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., J. Koch, C. Zheng, T. Bøvith, and K. H. Jensen, 2018: Comparison of simulated spatial patterns using rain gauge and polarimetric-radar-based precipitation data in catchment hydrological modeling. J. Hydrometeor., 19, 12731288, https://doi.org/10.1175/JHM-D-17-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hema, N., and K. Kant, 2017: Reconstructing missing hourly real-time precipitation data using a novel intermittent sliding window period technique for automatic weather station data. J. Meteor. Res., 31, 774790, https://doi.org/10.1007/s13351-017-6084-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., J. Liu, Y. Liu, and C. Gao, 2013: EMD-KNN model for annual average rainfall forecasting. J. Hydrol. Eng., 18, 14501457, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8, 12841295, https://doi.org/10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, W. N. W., and W. Z. W. Z. W. Ibrahim, 2017: Estimation of rainfall and stream flow missing data for Terengganu, Malaysia by using interpolation technique methods. Malays. J. Fundam. Appl. Sci., 13, 214218, https://doi.org/10.11113/MJFAS.V13N3.578.

    • Search Google Scholar
    • Export Citation
  • Kajornrit, J., K. W. Wong, and C. C. Fung, 2012a: Estimation of missing precipitation records using modular artificial neural networks. Neural Information Processing: Lecture Notes in Computer Science, T. W. Huang et al., Eds., Springer, 52–59.

    • Crossref
    • Export Citation
  • Kajornrit, J., K. W. Wong, and C. C. Fung, 2012b: Rainfall prediction in the northeast region of Thailand using modular fuzzy inference system. 2012 IEEE Int. Conf. on Fuzzy Systems, Brisbane, QLD, Australia, IEEE, 1–6, https://doi.org/10.1109/FUZZ-IEEE.2012.6250785.

    • Crossref
    • Export Citation
  • Kim, J.-W., and Y. A. Pachepsky, 2010: Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. J. Hydrol., 394, 305314, https://doi.org/10.1016/j.jhydrol.2010.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kisaka, M. O., M. Mucheru-Muna, F. K. Ngetich, J. Mugwe, D. Mugendi, F. Mairura, C. Shisanya, and G. L. Makokha, 2016: Potential of deterministic and geostatistical rainfall interpolation under high rainfall variability and dry spells: Case of Kenya’s Central Highlands. Theor. Appl. Climatol., 124, 349364, https://doi.org/10.1007/S00704-015-1413-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, J., G. Mendiguren, G. Mariethoz, and S. Stisen, 2017: Spatial sensitivity analysis of simulated land surface patterns in a catchment model using a set of innovative spatial performance metrics. J. Hydrol., 18, 11211142, https://doi.org/10.1175/JHM-D-16-0148.1.

    • Search Google Scholar
    • Export Citation
  • Lasser, M., O. Sungmin, and U. Foelsche, 2019: Evaluation of GPM-DPR precipitation estimates with WegenerNet gauge data. Atmos. Meas. Tech., 12, 50555070, https://doi.org/10.5194/amt-12-5055-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, R. K., M. A. Kohler, and J. Paulhus, 1988: Hydrology for Engineers. McGraw-Hill, 492 pp.

  • Mair, A., and A. Fares, 2010: Assessing rainfall data homogeneity and estimating missing records in Mamacrkaha Valley, O’ahu, Hawaii. J. Hydrol. Eng., 15, 6166, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariethoz, G., P. Renard, and J. Straubhaar, 2010: The direct sampling method to perform multiple-point geostatistical simulations. Water Resour. Res., 46, W11536, https://doi.org/10.1029/2008WR007621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1963: Principles of geostatistics. Econ. Geol., 58, 12461266, https://doi.org/10.2113/gsecongeo.58.8.1246.

  • Moeletsi, M. E., Z. P. Shabalala, G. De Nysschen, and S. Walker, 2016: Evaluation of an inverse distance weighting method for patching daily and dekadal rainfall over the Free State Province, South Africa. Water S.A., 42, 466474, https://doi.org/10.4314/wsa.v42i3.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., M. Todd, M. Hulme, and P. Jones, 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18891922, https://doi.org/10.1002/joc.680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noori, M. J., H. H. Hassan, and Y. T. Mustafa, 2014: Spatial estimation of rainfall distribution and its classification in Duhok Governorate using GIS. J. Water Resour. Prot., 06, 7582, https://doi.org/10.4236/jwarp.2014.62012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oriani, F., J. Straubhaar, P. Renard, and G. Mariethoz, 2014: Simulation of rainfall time series from different climatic regions using the direct sampling technique. Hydrol. Earth Syst. Sci., 18, 30153031, https://doi.org/10.5194/hess-18-3015-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oriani, F., A. Borghi, J. Straubhaar, G. Mariethoz, and P. Renard, 2016: Missing data simulation inside flow rate time-series using multiple-point statistics. Environ. Modell. Software, 86, 264276, https://doi.org/10.1016/j.envsoft.2016.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oriani, F., R. Mehrotra, G. Mariethoz, J. Straubhaar, A. Sharma, and P. Renard, 2017a: Simulating rainfall time-series: How to account for statistical variability at multiple scales? Stochastic Environ. Res. Risk Assess., 32, 321340, https://doi.org/10.1007/s00477-017-1414-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oriani, F., N. Ohana-Levi, F. Marra, J. Straubhaar, G. Mariethoz, P. Renard, A. Karnieli, and E. Morin, 2017b: Simulating small-scale rainfall fields conditioned by weather state and elevation: A data-driven approach based on rainfall radar images. Water Resour. Res., 53, 85128532, https://doi.org/10.1002/2017WR020876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and et al. , 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Rubin, D. B., 2004: Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, 258 pp.

  • Seo, B.-C., and et al. , 2018: Comprehensive evaluation of the IFloodS radar rainfall products for hydrologic applications. J. Hydrometeor., 19, 17931813, https://doi.org/10.1175/JHM-D-18-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stisen, S., and M. Tumbo, 2015: Interpolation of daily raingauge data for hydrological modelling in data sparse regions using pattern information from satellite data. Hydrol. Sci. J., 60, 19111926, https://doi.org/10.1080/02626667.2014.992789.

    • Search Google Scholar
    • Export Citation
  • Stone, C. J., 1977: Consistent nonparametric regression. Ann. Stat., 5, 595620, https://doi.org/10.1214/aos/1176343886.

  • Strebelle, S., 2002: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol., 34 (1), 121, https://doi.org/10.1023/A:1014009426274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teegavarapu, R. S. V., 2012: Spatial interpolation using nonlinear mathematical programming models for estimation of missing precipitation records. Hydrol. Sci. J., 57, 383406, https://doi.org/10.1080/02626667.2012.665994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teegavarapu, R. S. V., and V. Chandramouli, 2005: Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. J. Hydrol., 312, 191206, https://doi.org/10.1016/j.jhydrol.2005.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, Y.-K., 2013: Evaluation of point rainfall estimation methods in Hong Kong. 35th World Congress of the Int. Association for Hydro-Environment-Engineering and Research, Chengdu, China, IAHR, 453.

  • van Buuren, S., and K. Groothuis-Oudshoorn, 2010: mice: Multivariate imputation by chained equations in R. J. Stat. Software, 45, 168, https://doi.org/10.18637/JSS.V045.I03.

    • Search Google Scholar
    • Export Citation
  • Verworn, A., and U. Haberlandt, 2011: Spatial interpolation of hourly rainfall - Effect of additional information, variogram inference and storm properties. Hydrol. Earth Syst. Sci., 15, 569584, https://doi.org/10.5194/hess-15-569-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, P. D., P. Fiener, F. Wilken, S. Kumar, and K. Schneider, 2012: Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol., 464–465, 388400, https://doi.org/10.1016/j.jhydrol.2012.07.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, T. C., and J. L. McGuinness, 1973: Reciprocal Distance Squared Method, a Computer Technique for Estimating Areal Precipitation. Agricultural Research Service, 29 pp.

  • Woldesenbet, T. A., N. A. Elagib, L. Ribbe, and J. Heinrich, 2017: Gap filling and homogenization of climatological datasets in the headwater region of the Upper Blue Nile Basin, Ethiopia. Int. J. Climatol., 37, 21222140, https://doi.org/10.1002/joc.4839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J. S., 2009: A novel artificial neural network ensemble model based on k-nearest neighbor nonparametric estimation of regression function and its application for rainfall forecasting. 2009 Int. Joint Conf. on Computational Sciences and Optimization, Sanya, China, 41–53, https://doi.org/10.1109/CSO.2009.307.

    • Crossref
    • Export Citation
  • Yang, X., X. Xie, D. L. Liu, F. Ji, and L. Wang, 2015: Spatial interpolation of daily rainfall data for local climate impact assessment over greater Sydney region. Adv. Meteor., 2012, 563629, https://doi.org/10.1155/2015/563629.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 307 307 36
Full Text Views 33 33 8
PDF Downloads 33 33 7

Missing Data Imputation for Multisite Rainfall Networks: A Comparison between Geostatistical Interpolation and Pattern-Based Estimation on Different Terrain Types

View More View Less
  • 1 Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
  • | 2 Department of Hydrology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
  • | 3 Department of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
  • | 4 Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
© Get Permissions
Restricted access

Abstract

Missing rainfall data are a major limitation for distributed hydrological modeling and climate studies. Practitioners need reliable approaches that can be employed on a daily basis, often with too limited data in space to feed complex predictive models. In this study we compare different automatic approaches for missing data imputation, including geostatistical interpolation and pattern-based estimation algorithms. We introduce two pattern-based approaches based on the analysis of historical data patterns: (i) an iterative version of K-nearest neighbor (IKNN) and (ii) a new algorithm called vector sampling (VS) that combines concepts of multiple-point statistics and resampling. Both algorithms can draw estimations from variably incomplete data patterns, allowing the target dataset to be at the same time the training dataset. Tested on five case studies from Denmark, Australia, and Switzerland, the algorithms show a different performance that seems to be related to the terrain type: on flat terrains with spatially homogeneous rain events, geostatistical interpolation tends to minimize the average error, while in mountainous regions with nonstationary rainfall statistics, data mining can recover better the rainfall patterns. The VS algorithm, requiring minimal parameterization, turns out to be a convenient option for routine application on complex and poorly gauged terrains.

Corresponding author: Fabio Oriani, fabio.oriani@protonmail.com

Abstract

Missing rainfall data are a major limitation for distributed hydrological modeling and climate studies. Practitioners need reliable approaches that can be employed on a daily basis, often with too limited data in space to feed complex predictive models. In this study we compare different automatic approaches for missing data imputation, including geostatistical interpolation and pattern-based estimation algorithms. We introduce two pattern-based approaches based on the analysis of historical data patterns: (i) an iterative version of K-nearest neighbor (IKNN) and (ii) a new algorithm called vector sampling (VS) that combines concepts of multiple-point statistics and resampling. Both algorithms can draw estimations from variably incomplete data patterns, allowing the target dataset to be at the same time the training dataset. Tested on five case studies from Denmark, Australia, and Switzerland, the algorithms show a different performance that seems to be related to the terrain type: on flat terrains with spatially homogeneous rain events, geostatistical interpolation tends to minimize the average error, while in mountainous regions with nonstationary rainfall statistics, data mining can recover better the rainfall patterns. The VS algorithm, requiring minimal parameterization, turns out to be a convenient option for routine application on complex and poorly gauged terrains.

Corresponding author: Fabio Oriani, fabio.oriani@protonmail.com
Save