• Abbaspour, K. C., E. Rouholahnejad, S. Vaghefi, R. Srinivasan, H. Yang, and B. Kløve, 2015: A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol., 524, 733752, https://doi.org/10.1016/j.jhydrol.2015.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, J. C. M., I. Pechlivanidis, D. Gustafsson, C. Donnelly, and B. Arheimer, 2015: Key factors for improving large-scale hydrological model performance. Eur. Water, 49, 7788.

    • Search Google Scholar
    • Export Citation
  • Arnal, L., M.-H. Ramos, E. Coughlan de Perez, H. L. Cloke, E. Stephens, F. Wetterhall, S. J. van Andel, and F. Pappenberger, 2016: Willingness-to-pay for a probabilistic flood forecast: A risk-based decision-making game. Hydrol. Earth Syst. Sci., 20, 31093128, https://doi.org/10.5194/hess-20-3109-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnal, L., A. W. Wood, E. Stephens, H. L. Cloke, and F. Pappenberger, 2017: An efficient approach for estimating streamflow forecast skill elasticity. J. Hydrometeor., 18, 17151729, https://doi.org/10.1175/JHM-D-16-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnal, L., H. L. Cloke, E. Stephens, F. Wetterhall, C. Prudhomme, J. Neumann, B. Krzeminski, and F. Pappenberger, 2018: Skilful seasonal forecasts of streamflow over Europe? Hydrol. Earth Syst. Sci., 22, 20572072, https://doi.org/10.5194/hess-22-2057-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. I. J. M. van Dijk, A. de Roo, D. G. Miralles, T. R. McVicar, J. Schellekens, and L. A. Bruijnzeel, 2016: Global-scale regionalization of hydrologic model parameters. Water Resour. Res., 52, 35993622, https://doi.org/10.1002/2015WR018247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Donnelly, and D. Gustafsson, 2018: Near-real-time adjusted reanalysis forcing data for hydrology. Hydrol. Earth Syst. Sci., 22, 9891000, https://doi.org/10.5194/hess-22-989-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, C., and P. Rogers, 2006: Effect of forecast-based pricing on irrigated agriculture: A simulation. J. Water Resour. Plann. Manage., 132, 403413, https://doi.org/10.1061/(ASCE)0733-9496(2006)132:6(403).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CEDEX, 2016: Anuario de aforos 2015-2016 (in Spanish). Centro de Estudios Hidrográficos del Centro de Experimentación de Obras Públicas, Ministerio para la Transición Ecológica y el Reto Demográfico, https://ceh.cedex.es/anuarioaforos/default.asp.

  • CHJ, 2015: Plan Hidrológico de la Demarcación Hidrográfica del Júcar Memoria: Ciclo de Planificación Hidrológica 2015-2021 (in Spanish). Tech. Rep., Confederación Hidrográfica del Júcar, Ministerio de Agricultura, Alimentación y Medio Ambiente, 896 pp.

  • Contreras, E., J. Herrero, L. Crochemore, I. Pechlivanidis, C. Photiadou, C. Aguilar, and M. J. Polo, 2020: Advances in the definition of needs and specifications for a climate service tool aimed at small hydropower plants’ operation and management. Energies, 13, 1827, https://doi.org/10.3390/en13071827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crochemore, L., M.-H. Ramos, F. Pappenberger, S. J. van Andel, and A. W. Wood, 2016: An experiment on risk-based decision-making in water management using monthly probabilistic forecasts. Bull. Amer. Meteor. Soc., 97, 541551, https://doi.org/10.1175/BAMS-D-14-00270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crochemore, L., M.-H. Ramos, and I. G. Pechlivanidis, 2020: Can continental models convey useful seasonal hydrologic information at the catchment scale? Water Resour. Res., 56, e2019WR025700, https://doi.org/10.1029/2019WR025700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, B., T. Wagener, and F. Pianosi, 2019: An argument-driven classification and comparison of reservoir operation optimization methods. Adv. Water Resour., 128, 7486, https://doi.org/10.1016/j.advwatres.2019.04.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, C., J. C. M. Andersson, and B. Arheimer, 2016: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J., 61, 255273, https://doi.org/10.1080/02626667.2015.1027710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ficchì, A., L. Raso, D. Dorchies, F. Pianosi, P. Malaterre, P. Van Overloop, and M. Jay-Allemand, 2016: Optimal operation of the multireservoir system in the Seine river basin using deterministic and ensemble forecasts. J. Water Resour. Plann. Manage., 142, 05015005, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, K., C. Bertacchi Uvo, and J. Olsson, 2018: The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers. Hydrol. Earth Syst. Sci., 22, 29532970, https://doi.org/10.5194/hess-22-2953-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giuliani, M., L. Crochemore, I. Pechlivanidis, and A. Castelletti, 2020: From skill to value: Isolating the influence of end-user behaviour on seasonal forecast assessment. Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, G., S. Liu, W. Yipeng, J. Li, R. Zhou, and X. Zhu, 2018: Short-term water demand forecast based on deep learning method. J. Water Resour. Plann. Manage., 144, 04018076, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecast., 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hundecha, Y., B. Arheimer, C. Donnelly, and I. Pechlivanidis, 2016: A regional parameter estimation scheme for a pan-European multi-basin model. J. Hydrol. Reg. Stud., 6, 90111, https://doi.org/10.1016/j.ejrh.2016.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and et al. , 2019: SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev., 12, 10871117, https://doi.org/10.5194/gmd-12-1087-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kauffeldt, A., S. Halldin, A. Rodhe, C.-Y. Xu, and I. K. Westerberg, 2013: Disinformative data in large-scale hydrological modelling. Hydrol. Earth Syst. Sci., 17, 28452857, https://doi.org/10.5194/hess-17-2845-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kling, H., M. Fuchs, and M. Paulin, 2012: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol., 424–425, 264277, https://doi.org/10.1016/j.jhydrol.2012.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and et al. , 2020: A vision for hydrological prediction. Atmosphere, 11, 237, https://doi.org/10.3390/atmos11030237.

  • Li, W., Q. Duan, C. Miao, A. Ye, W. Gong, and Z. Di, 2017: A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip. Rev.: Water, 4, e1246, https://doi.org/10.1002/wat2.1246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Giuliani, and A. Castelletti, 2017: A coupled human–natural system to assess the operational value of weather and climate services for agriculture. Hydrol. Earth Syst. Sci., 21, 46934709, https://doi.org/10.5194/hess-21-4693-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindström, G., C. Pers, J. Rosberg, J. Strömqvist, and B. Arheimer, 2010: Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res., 41, 295319, https://doi.org/10.2166/nh.2010.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macian-Sorribes, H., and M. Pulido-Velazquez, 2017: Integrating historical operating decisions and expert criteria into a DSS for the management of a multireservoir system. J. Water Resour. Plann. Manage., 143, 04016069, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and et al. , 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and et al. , 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 10871096, https://doi.org/10.1287/mnsc.22.10.1087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meißner, D., B. Klein, and M. Ionita, 2017: Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe. Hydrol. Earth Syst. Sci., 21, 64016423, https://doi.org/10.5194/hess-21-6401-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazemi, A., and H. S. Wheater, 2015: On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand. Hydrol. Earth Syst. Sci., 19, 3361, https://doi.org/10.5194/hess-19-33-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, J., L. Arnal, R. Emerton, H. Griffith, S. Hyslop, S. Theofanidi, and H. L. Cloke, 2018a: Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity. Geosci. Commun., 1, 3557, https://doi.org/10.5194/gc-1-35-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, J., L. Arnal, L. Magnusson, and H. Cloke, 2018b: The 2013/14 thames basin floods: Do improved meteorological forecasts lead to more skillful hydrological forecasts at seasonal time scales? J. Hydrometeor., 19, 10591075, https://doi.org/10.1175/JHM-D-17-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pechlivanidis, I. G., and B. Arheimer, 2015: Large-scale hydrological modelling by using modified PUB recommendations: The India-HYPE case. Hydrol. Earth Syst. Sci., 19, 45594579, https://doi.org/10.5194/hess-19-4559-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pechlivanidis, I. G., L. Crochemore, J. Rosberg, and T. Bosshard, 2020: What are the key drivers controlling the quality of seasonal streamflow forecasts? Water Resour. Res., 56, e2019WR026987, https://doi.org/10.1029/2019WR026987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pianosi, F., and R. Soncini-Sessa, 2009: Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model. Water Resour. Res., 45, W10430, https://doi.org/10.1029/2008WR007335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pina, J., A. Tilmant, and P. Côté, 2017: Optimizing multireservoir system operating policies using exogenous hydrologic variables. Water Resour. Res., 53, 98459859, https://doi.org/10.1002/2017WR021701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, M.-H., J. Bartholmes, and J. Thielen-del Pozo, 2007: Development of decision support products based on ensemble forecasts in the European flood alert system. Atmos. Sci. Lett., 8, 113119, https://doi.org/10.1002/asl.161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rani, D., and M. M. Moreira, 2010: Simulation–optimization modeling: A survey and potential application in reservoir systems operation. Water Resour. Manage., 24, 11071138, https://doi.org/10.1007/s11269-009-9488-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raso, L., and O. Malaterre, 2017: Combining short-term and long-term reservoir operation using infinite horizon model predictive control. J. Irrig. Drain. Eng., 143, B4016002, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, S. O., and P. F. Campbell, 1996: Reservoir operating rules with fuzzy programming. J. Water Resour. Plann. Manage., 122, 165170, https://doi.org/10.1061/(ASCE)0733-9496(1996)122:3(165).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., R. Kumar, and S. Attinger, 2010: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, Z., 2010: Fuzzy Logic and Hydrological Modeling. CRC Press, 348 pp.

  • Shrestha, B. P., L. Duckstein, and E. Z. Stakhiv, 1996: Fuzzy rule-based modeling of reservoir operation. J. Water Resour. Plann. Manage., 122, 262269, https://doi.org/10.1061/(ASCE)0733-9496(1996)122:4(262).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., and A. W. Wood, 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, https://doi.org/10.1029/2007GL032487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., J. Sheffield, E. F. Wood, and D. P. Lettenmaier, 2013: On the sources of global land surface hydrologic predictability. Hydrol. Earth Syst. Sci., 17, 27812796, https://doi.org/10.5194/hess-17-2781-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreekanth, J., B. Datta, and P. K. Mohapatra, 2012: Optimal short-term reservoir operation with integrated long-term goals. Water Resour. Manage., 26, 28332850, https://doi.org/10.1007/s11269-012-0051-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., F. Wetterhall, and J. Seibert, 2011: Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dyn., 37, 20872105, https://doi.org/10.1007/s00382-010-0979-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turan, M. E., and M. A. Yurdusev, 2016: Fuzzy conceptual hydrological model for water flow prediction. Water Resour. Manage., 30, 653667, https://doi.org/10.1007/s11269-015-1183-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanders, N., S. Thober, R. Kumar, M. Pan, J. Sheffield, L. Samaniego, and E. F. Wood, 2019: Development and evaluation of a pan-European multimodel seasonal hydrological forecasting system. J. Hydrometeor., 20, 99115, https://doi.org/10.1175/JHM-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., H. C. Winsemius, E. Dutra, M. Werner, and E. Pappenberger, 2015: Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrol. Earth Syst. Sci., 19, 25772586, https://doi.org/10.5194/hess-19-2577-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and D. P. Lettenmaier, 2008: An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett., 35, L14401, https://doi.org/10.1029/2008GL034648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., T. Hopson, A. Newman, L. Brekke, J. Arnold, and M. Clark, 2016: Quantifying streamflow forecast skill elasticity to initial condition and climate prediction skill. J. Hydrometeor., 17, 651668, https://doi.org/10.1175/JHM-D-14-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., C. Cheng, Y. Zeng, and J. Lund, 2016: Centralized versus distributed cooperative operating rules for multiple cascaded hydropower reservoirs. J. Water Resour. Plann. Manage., 142, 05016008, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., J. Andréasson, L. Phil Graham, J. Olsson, J. Rosberg, and F. Wetterhall, 2010: Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrol. Res., 41, 211229, https://doi.org/10.2166/nh.2010.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 342 342 47
Full Text Views 34 34 8
PDF Downloads 32 32 8

Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management

View More View Less
  • 1 Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia, Spain
  • | 2 Hydrology Research Unit, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
© Get Permissions
Restricted access

Abstract

Streamflow forecasting services driven by seasonal meteorological forecasts from dynamic prediction systems deliver valuable information for decision-making in the water sector. Moving beyond the traditional river basin boundaries, large-scale hydrological models enable a coordinated, efficient, and harmonized anticipation and management of water-related risks (droughts, floods). However, the use of forecasts from such models at the river basin scale remains a challenge, depending on how the model reproduces the hydrological features of each particular river basin. Consequently, postprocessing of forecasts is a crucial step to ensure usefulness at the river basin scale. In this paper we present a methodology to postprocess seasonal streamflow forecasts from large-scale hydrological models and advance their quality for local applications. It consists of fuzzy logic systems that bias-adjust seasonal forecasts from a large-scale hydrological model by comparing its modeled streamflows with local observations. The methodology is demonstrated using forecasts from the pan-European hydrological model E-HYPE at the Jucar River basin (Spain). Fuzzy postprocessed forecasts are compared to postprocessed forecasts derived from a quantile mapping approach as a benchmark. Fuzzy postprocessing was able to provide skillful streamflow forecasts for the Jucar River basin, keeping most of the skill of raw E-HYPE forecasts and also outperforming quantile-mapping-based forecasts. The proposed methodology offers an efficient one-to-one mapping between large-scale modeled streamflows and basin-scale observations preserving its temporal dependence structure and can adapt its input set to increase the skill of postprocessed forecasts.

Corresponding author: Hector Macian-Sorribes, hecmasor@upv.es

Abstract

Streamflow forecasting services driven by seasonal meteorological forecasts from dynamic prediction systems deliver valuable information for decision-making in the water sector. Moving beyond the traditional river basin boundaries, large-scale hydrological models enable a coordinated, efficient, and harmonized anticipation and management of water-related risks (droughts, floods). However, the use of forecasts from such models at the river basin scale remains a challenge, depending on how the model reproduces the hydrological features of each particular river basin. Consequently, postprocessing of forecasts is a crucial step to ensure usefulness at the river basin scale. In this paper we present a methodology to postprocess seasonal streamflow forecasts from large-scale hydrological models and advance their quality for local applications. It consists of fuzzy logic systems that bias-adjust seasonal forecasts from a large-scale hydrological model by comparing its modeled streamflows with local observations. The methodology is demonstrated using forecasts from the pan-European hydrological model E-HYPE at the Jucar River basin (Spain). Fuzzy postprocessed forecasts are compared to postprocessed forecasts derived from a quantile mapping approach as a benchmark. Fuzzy postprocessing was able to provide skillful streamflow forecasts for the Jucar River basin, keeping most of the skill of raw E-HYPE forecasts and also outperforming quantile-mapping-based forecasts. The proposed methodology offers an efficient one-to-one mapping between large-scale modeled streamflows and basin-scale observations preserving its temporal dependence structure and can adapt its input set to increase the skill of postprocessed forecasts.

Corresponding author: Hector Macian-Sorribes, hecmasor@upv.es
Save