• Allan, R. J., J. A. Lindesay, and D. E. Parker, 1996: El Niño Southern Oscillation and Climatic Variability. CSIRO Publishing, 405 pp.

  • Bao, G., Y. Liu, and H. W. Linderholm, 2012a: April-September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol., 313–314, 162172, https://doi.org/10.1016/j.palaeo.2011.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, G., Y. Liu, and N. Liu, 2012b: A tree-ring-based reconstruction of the Yimin River annual runoff in the Hulun Buir region, Inner Mongolia, for the past 135 years. Chin. Sci. Bull., 57, 47654775, https://doi.org/10.1007/s11434-012-5547-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, G., Y. Liu, N. Liu, and H. W. Linderholm, 2014: Drought variability in eastern Mongolian Plateau and its linkages to the large-scale climate forcing. Climate Dyn., 44, 717733, https://doi.org/10.1007/s00382-014-2273-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barria, P., M. C. Peel, K. J. E. Walsh, and A. Muñoz, 2018: The first 300-year streamflow reconstruction of a high-elevation river in Chile using tree rings. Int. J. Climatol., 38, 436451, https://doi.org/10.1002/joc.5186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biazin, B., and G. Sterk, 2013: Drought vulnerability drives land-use and land cover changes in the rift valley dry lands of Ethiopia. Agric. Ecosyst. Environ., 164, 100113, https://doi.org/10.1016/j.agee.2012.09.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Q., Y. Liu, H. Liu, and J. Ren, 2015: Reconstruction of drought variability in North China and its association with sea surface temperature in the joining area of Asia and Indian–Pacific Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 417, 554560, https://doi.org/10.1016/j.palaeo.2014.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Chang., 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., H. Shang, I. P. Panyushkina, D. M. Meko, S. Yu, Y. Yuan, and F. Chen, 2019: Tree-ring reconstruction of Lhasa River streamflow reveals 472 years of hydrologic change on southern Tibetan Plateau. J. Hydrol., 572, 169178, https://doi.org/10.1016/j.jhydrol.2019.02.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Li, K. Fang, N. K. Davi, X. He, M. Cui, X. Zhang, and J. Peng, 2012a: Seasonal dynamics of vegetation over the past 100 years inferred from tree rings and climate in Hulunbei’er steppe, northern China. J. Arid Environ., 83, 8693, https://doi.org/10.1016/j.jaridenv.2012.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., X. Zhang, M. Cui, X. He, W. Ding, and J. Peng, 2012b: Tree-ring based precipitation reconstruction for the forest-steppe ecotone in northern Inner Mongolia, China and its linkages to the Pacific Ocean variability. Global Planet. Change, 86–87, 4556, https://doi.org/10.1016/j.gloplacha.2012.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., X. Zhang, X. He, N. K. Davi, M. Cui, and J. Peng, 2013: Extension of summer (June-August) temperature records for northern Inner Mongolia (1715-2008), China using tree rings. Quat. Int., 283, 2129, https://doi.org/10.1016/j.quaint.2012.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, D., and et al. , 1999: Chronicles of Hulun Buir League (I). Inner Mongolia Culture Press, 734 pp.

  • Cook, E. R., and L. A. Kairiukstis, 1990: Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers, 394 pp.

  • Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought reconstructions for the continental United States. J. Climate, 12, 11451162, https://doi.org/10.1175/1520-0442(1999)012%3C1145:DRFTCU%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creed, I. F., T. Hwang, B. Lutz, and D. Way, 2015: Climate warming causes intensification of the hydrological cycle, resulting in changes to the vernal and autumnal windows in a northern temperate forest. Hydrol. Processes, 29, 35193534, https://doi.org/10.1002/hyp.10450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Qian, K. E. Trenberth, and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792, https://doi.org/10.1175/2008JCLI2592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davi, N. K., G. C. Jacoby, A. E. Curtis, and N. Baatarbileg, 2006: Extension of drought records for central Asia using tree rings: West-central Mongolia. J. Climate, 19, 288299, https://doi.org/10.1175/JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dilley, M., and B. N. Heyman, 1995: ENSO and disaster: Droughts, floods and El Niño/Southern Oscillation warm events. Disasters, 19, 181193, https://doi.org/10.1111/j.1467-7717.1995.tb00338.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and et al. , 2014: Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol., 34, 581592, https://doi.org/10.1002/joc.3707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, C., W. Greuell, J. Andersson, D. Gerten, G. Pisacane, P. Roudier, and F. Ludwig, 2017: Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Climatic Change, 143, 1326, https://doi.org/10.1007/s10584-017-1971-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, L., T. Liu, X. Wang, Y. Luo, and L. Wu, 2010: Development of a regional regression model for estimating annual runoff in the Hailar River basin of China. J. Water Resource Prot., 2, 934943, https://doi.org/10.4236/jwarp.2010.211111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., J. L. Evans, P. Ya. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425, https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eicker, A., E. Forootan, A. Springer, L. Longuevergne, and J. Kusche, 2016: Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmos., 121, 733745, https://doi.org/10.1002/2015JD023808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, W., P. Xiao, X. Feng, X. Chang, and Y. Yang, 2014: Grassland change detection based on remote sensing imagery in typical area of Hulunbuir Grassland from 1989 to 2010 (in Chinese). Remote Sens. Inf., 29, 6167.

    • Search Google Scholar
    • Export Citation
  • Ferrero, M. E., R. Villalba, M. De Membiela, L. Ferri Hidalgo, and B. H. Luckman, 2015: Tree-ring based reconstruction of Río Bermejo streamflow in subtropical South America. J. Hydrol., 525, 572584, https://doi.org/10.1016/j.jhydrol.2015.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, H. C., 1976: Tree Rings and Climate. Academic Press, 567 pp.

  • Gaire, N. P., D. R. Bhuju, M. Koirala, S. K. Shah, M. Carrer, and R. Timilsena, 2017: Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840. Dendrochronologia, 42, 2130, https://doi.org/10.1016/j.dendro.2016.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., Z. Shi, L. Xu, X. Yang, Z. Jia, S. , C. Feng, and J. Shang, 2013: Precipitation variability in Hulunbuir, northeastern China since 1829 AD reconstructed from tree-rings and its linkage with remote oceans. J. Arid Environ., 95, 1421, https://doi.org/10.1016/j.jaridenv.2013.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, D., C. Li, Y. Wang, W. Xu, and H. Zhao, 2009: Area change of Hui he wetland and the relation between that and local climate from 2000 to 2007. Wetland Sci., 7, 314320, https://doi.org/10.13248/j.cnki.wetlandsci.2009.04.005.

    • Search Google Scholar
    • Export Citation
  • Glantz, M. H., 1996: Currents of Change: El Niño’s Impact on Climate and Society. Cambridge University Press, 194 pp.

  • Greve, P., L. Gudmundsson, and S. I. Seneviratne, 2018: Regional scaling of annual mean precipitation and water availability with global temperature change. Earth Syst. Dyn., 9, 227240, https://doi.org/10.5194/esd-9-227-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., M. Leonard, H. X. Do, S. Westra, and S. I. Seneviratne, 2019: Observed trends in global indicators of mean and extreme streamflow. Geophys. Res. Lett., 46, 756766, https://doi.org/10.1029/2018GL079725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harley, G. L., J. T. Maxwell, E. Larson, H. D. Grissino-Mayer, J. Henderson, and J. Huffman, 2017: Suwannee River flow variability 1550–2005 CE reconstructed from a multispecies tree-ring network. J. Hydrol., 544, 438451, https://doi.org/10.1016/j.jhydrol.2016.11.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoang, L. P., and et al. , 2016: Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci., 20, 30273041, https://doi.org/10.5194/hess-20-3027-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. L., 1983: Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull., 43, 6978.

  • Hu, Q., J. A. Torres-Alavez, and M. S. van Den Broeke, 2018: Land-cover change and the “Dust Bowl” drought in the U.S. Great Plains. J. Climate, 31, 46574667, https://doi.org/10.1175/JCLI-D-17-0515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, Y., G. Zhou, S. Wang, and L. Wang, 2015: Increase in flood and drought disasters during 1500–2000 in Southwest China. Nat. Hazards, 77, 18531861, https://doi.org/10.1007/s11069-015-1679-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, T., Q. Zhang, D. Zhu, and Y. Wu, 2006: Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470–2003). Quat. Int., 144, 2937, https://doi.org/10.1016/j.quaint.2005.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and G. J. McCabe Jr., 1999: Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35, 233241, https://doi.org/10.1029/1998WR900018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., S. Xie, E. R. Cook, G. Huang, R. D’Arrigo, F. Liu, J. Ma, and X. Zheng, 2011: Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Climate Change., 1, 114118, https://doi.org/10.1038/nclimate1086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and et al. , 2013: El Niño modulations over the past seven centuries. Nat. Climate Change., 3, 822826, https://doi.org/10.1038/nclimate1936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, E., and et al. , 2006: The 1920s drought recorded by tree rings and historical documents in the semi-arid and arid areas of northern China. Climatic Change, 79, 403432, https://doi.org/10.1007/s10584-006-9082-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., and et al. , 2015: A tree-ring based reconstruction of summer relative humidity variability in eastern Mongolian Plateau and its associations with the Pacific and Indian Oceans. Palaeogeogr. Palaeoclimatol. Palaeoecol., 438, 113123, https://doi.org/10.1016/j.palaeo.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., and et al. , 2016: Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean. J. Asian Earth Sci., 115, 298307, https://doi.org/10.1016/j.jseaes.2015.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., R. J. Harper, K. R. J. Smettem, B. Dell, and S. Liu, 2019: Responses of streamflow to vegetation and climate change in southwestern Australia. J. Hydrol., 572, 761770, https://doi.org/10.1016/j.jhydrol.2019.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Bao, H. Song, Q. Cai, and J. Sun, 2009: Precipitation reconstruction from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hailar region, Inner Mongolia, China back to 1865 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol., 282, 8187, https://doi.org/10.1016/j.palaeo.2009.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and et al. , 2017a: Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat. Commun., 8, 15386, https://doi.org/10.1038/NCOMMS15386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., X. Zhang, H. Song, Q. Cai, Q. Li, B. Zhao, H. Liu, and R. Mei, 2017b: Tree-ring-width-based PDSI reconstruction for central Inner Mongolia, China over the past 333 years. Climate Dyn., 48, 867879, https://doi.org/10.1007/s00382-016-3115-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, K. E., and N. A. Brunsell, 2015: Influence of drought on growing season carbon and water cycling with changing land cover. Agric. For. Meteor., 213, 217225, https://doi.org/10.1016/j.agrformet.2015.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., B. Ye, and C. Li, 2014: Changes of runoff of the Hailar River basin in the southern margin of permafrost zone, Northeast China during 1958–2008 (in Chinese). J. Glaciol. Geocryol, 36, 394402.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409445, https://doi.org/10.1007/BF00142586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margolis, E. Q., D. M. Meko, and R. Touchan, 2011: A tree-ring reconstruction of streamflow in the Santa Fe River, New Mexico. J. Hydrol., 397, 118127, https://doi.org/10.1016/j.jhydrol.2010.11.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. H. England, O. E. Timm, and A. T. Wittenberg, 2013: Inferred changes in El Niño- Southern Oscillation variance over the past six centuries. Climate Past, 9, 22692284, https://doi.org/10.5194/cp-9-2269-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meko, D. M., C. A. Woodhouse, and K. Morino, 2012: Dendrochronology and links to streamflow. J. Hydrol., 412–413, 200209, https://doi.org/10.1016/j.jhydrol.2010.11.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mokria, M., A. Gebrekirstos, A. Abiyu, and A. Bräuning, 2018: Upper Nile River flow reconstructed to A.D. 1784 from tree-rings for a long-term perspective on hydrologic-extremes and effective water resource management. Quat. Sci. Rev., 199, 126143, https://doi.org/10.1016/j.quascirev.2018.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mondal, A., and P. P. Mujumdar, 2012: On the basin-scale detection and attribution of human-induced climate change in monsoon precipitation and streamflow. Water Resour. Res., 48, W10520, https://doi.org/10.1029/2011WR011468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Amer. Soc. Agric. Biol. Eng., 50, 885900, https://doi.org/10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Muñoz, A. A., and et al. , 2016: Streamflow variability in the Chilean temperate - mediterranean climate transition (35°S–42°S) during the last 400 years inferred from tree-ring records. Climate Dyn., 47, 40514066, https://doi.org/10.1007/s00382-016-3068-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., K. R. Briffa, and P. D. Jones, 1997: Adjusting variance for sample-size in tree-ring chronologies and other regional mean timeseries. Dendrochronologia, 15, 8999.

    • Search Google Scholar
    • Export Citation
  • Panyushkina, I. P., D. M. Meko, M. G. Macklin, W. H. J. Toonen, N. S. Mukhamadiev, V. G. Konovalov, N. Z. Ashikbaev, and A. O. Sagitov, 2018: Runoff variations in Lake Balkhash basin, central Asia, 1779–2015, inferred from tree rings. Climate Dyn., 51, 31613177, https://doi.org/10.1007/s00382-018-4072-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, N., G. C. Jacoby, R. D. D’Arrigo, E. R. Cook, B. M. Buckley, C. Dugarjav, and R. Mijiddorj, 2001: Hydrometeorological reconstructions for northeastern Mongolia derived from tree rings: 1651-1995. J. Climate, 14, 872881, https://doi.org/10.1175/1520-0442(2001)014<0872:HRFNMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña-Gallardo, M., and et al. , 2019: Complex influences of meteorological drought time-scales on hydrological droughts in natural basins of the contiguous Unites States. J. Hydrol., 568, 611625, https://doi.org/10.1016/j.jhydrol.2018.11.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., X. Lin, and Y. Zhu, 2012: Global and China temperature changes associated with the inter-decadal variations of east Asian summer monsoon advances. Chin. Sci. Bull., 57, 39233930, https://doi.org/10.1007/s11434-012-5318-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schook, D. M., J. M. Friedman, and S. L. Rathburn, 2016: Flow reconstructions in the Upper Missouri River Basin using riparian tree rings. Water Resour. Res., 52, 81598173, https://doi.org/10.1002/2016WR018845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, S., and P. Mujumdar, 2017: Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Sci. Rep., 7, 15582, https://doi.org/10.1038/s41598-017-15896-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • She, D., J. Xia, J. Song, H. Du, J. Chen, and L. Wan, 2013: Spatio-temporal variation and statistical characteristic of extreme dry spell in Yellow River Basin, China. Theor. Appl. Climatol., 112, 201213, https://doi.org/10.1007/s00704-012-0731-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Z., and et al. , 2015: Growth-climate response and drought reconstruction from tree-ring of Mongolian pine in Hulunbuir, Northeast China. J. Plant Ecol., 9, 5160, https://doi.org/10.1093/jpe/rtv029.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2018: Regional intensification of the tropical hydrological cycle during ENSO. Geophys. Res. Lett., 45, 43614370, https://doi.org/10.1029/2018GL077598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and et al. , 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Stokes, M. A., and T. L. Smiley, 1968: An Introduction to Tree Ring Dating. University of Chicago Press, 73 pp.

  • Sun, B., Y. Liu, Y. Lei, and L. Guo, 2017: Warm-induced aridification in eastern Inner Mongolia evidenced by tree rings. Dendrochronologia, 42, 7379, https://doi.org/10.1016/j.dendro.2017.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tananaev, N. I., O. M. Makarieva, and L. S. Lebedeva, 2016: Trends in annual and extreme flows in the Lena River basin, northern Eurasia. Geophys. Res. Lett., 43, 10 76410 772, https://doi.org/10.1002/2016GL070796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., S. Li, M. Yang, Z. Xu, Y. Liu, and H. Gu, 2019: Streamflow response to snow regime shift associated with climate variability in four mountain watersheds in the US Great Basin. J. Hydrol., 573, 255266, https://doi.org/10.1016/j.jhydrol.2019.03.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12, 26792690, https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urrutia, R. B., A. Lara, R. Villalba, D. A. Christie, C. Le Quesne, and A. Cuq, 2011: Multicentury tree ring reconstruction of annual streamflow for the Maule River watershed in south central Chile. Water Resour. Res., 47, w06527, https://doi.org/10.1029/2010WR009562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villafuerte, M. Q., and J. Matsumoto, 2015: Significant influences of global mean temperature and ENSO on extreme rainfall in Southeast Asia. J. Climate, 28, 19051919, https://doi.org/10.1175/JCLI-D-14-00531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, S. Y. Yim, and B. Xiang, 2013: Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA, 110, 53475352, https://doi.org/10.1073/pnas.1219405110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., C. Li, B. Sun, C. Fan, L. Liang, and Z. Han, 2017: Impacts of precipitation on runoff yield of Hulun Lake basin during 1963—2014 (in Chinese). Bull. Soil Water Conserv., 37, 115119, https://doi.org/10.13961/j.cnki.stbctb.2017.02.016.

    • Search Google Scholar
    • Export Citation
  • Wang, P., K. Xiaokaitijiang, and Y. Li, 2017: Influence of climate change on the water environment of the Hulun Lake. Int. Res. J. Public Environ. Health, 4, 8495.

    • Search Google Scholar
    • Export Citation
  • Wang, X. M., C. X. Zhang, E. Hasi, and Z. B. Dong, 2010: Has the three norths forest shelterbelt program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ., 74, 1322, https://doi.org/10.1016/j.jaridenv.2009.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Y. Liu, 2017: Reconstruction of March–June precipitation from tree rings in central Liaoning, China. Climate Dyn., 49, 31113121, https://doi.org/10.1007/s00382-016-3497-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., K. R. Briffa, and P. D. Jones, 1984: On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteor. Climatol., 23, 201213, https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, L., and et al. , 1996: Chronicles of Yakeshi City (1956-1989). Inner Mongolia People Press, 1191 pp.

  • Xie, X., S. Liang, Y. Yao, K. Jia, S. Meng, and J. Li, 2015: Detection and attribution of changes in hydrological cycle over the Three-North region of China: Climate change versus afforestation effect. Agric. For. Meteor., 203, 7487, https://doi.org/10.1016/j.agrformet.2015.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C., and et al. , 2019: Increased variability of Thailand’s Chao Phraya River peak-season flow and its association with ENSO variability: Evidence from tree ring δ18O. Geophys. Res. Lett., 46, 48634872, https://doi.org/10.1029/2018GL081458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., X. Chen, Y. He, J. Wang, and C. Lai, 2019: Reconstruction of annual runoff since CE 1557 using tree-ring chronologies in the upper Lancang-Mekong River basin. J. Hydrol., 569, 771781, https://doi.org/10.1016/j.jhydrol.2018.12.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Z. Qin, W. Li, and B. Xu, 2012: Temporal and spatial variations of vegetation cover in Hulun Buir grassland of Inner Mongolia, China. Arid Land Res. Manage., 26, 328343, https://doi.org/10.1080/15324982.2012.709215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J., S. S. Wang, R. R. Gillies, B. Kravitz, L. Hipps, and P. J. Rasch, 2015: Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat. Commun., 6, 8657, https://doi.org/10.1038/ncomms9657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., X. Liu, and P. Bai, 2019: Assessment of hydrological drought and its recovery time for eight tributaries of the Yangtze River (China) based on downscaled GRACE data. J. Hydrol., 568, 592603, https://doi.org/10.1016/j.jhydrol.2018.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., T. Liu, H. Jiang, Y. Bao, R. Wang, and X. Lu, 2011: Fuzzy comprehensive evaluation of carrying capacity of water resources of Hailaer River Basin (in Chinese). Yellow River, 33, 4850.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., X. Bai, M. Hou, Y. Chang, and Z. Chen, 2018: Reconstruction of the regional summer ground surface temperature in the permafrost region of Northeast China from 1587 to 2008. Climatic Change, 148, 519531, https://doi.org/10.1007/s10584-018-2212-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., Y. Liu, H. Song, Q. Cai, Q. Li, B. Zhao, H. Liu, and R. Mei, 2017: Interannual variability of PDSI from tree-ring widths for the past 278 years in Baotou, China. Trees, 31, 15311541, https://doi.org/10.1007/s00468-017-1567-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, F., and et al. , 1992: Hydrological Chronicles of Hulun Buir League. Inner Mongolia Culture Press, 284 pp.

  • Zhao, H., C. Li, H. Zhao, H. Tian, Q. Song, and Z. Kou, 2007: The climate change and its effect on the water environment in the Hulun Lake wetland (in Chinese). J. Glaciol. Geocryol., 29, 795801.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 132 132 9
Full Text Views 62 62 5
PDF Downloads 81 81 12

Recent Intensified Runoff Variability in the Hailar River Basin during the Past Two Centuries

View More View Less
  • 1 College of Land and Environment, and Tree-Ring Laboratory/Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang, China
  • | 2 Tree-Ring Laboratory/Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang, China
  • | 3 Tree-Ring Laboratory/Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang, and The Second Institute of Forestry Monitoring and Planning of Inner Mongolia Autonomous Region, Ulanhot, China
  • | 4 College of Land and Environment, and Tree-Ring Laboratory/Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, and Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, China
  • | 5 Tree-Ring Laboratory/Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Using tree-ring data of Pinus sylvestris var. mongolica from the Hulun Buir region in northeast China, 12 annual runoff series of the Hailar River spanning the past 202–216 years were established for the first time; these included 11 branches and one for the entire basin. These reconstructions, which could explain 29.4%–52.7% of the total variance for the measured runoffs during 1956–2006, performed well in statistical verification tests. In the whole basin’s reconstruction of 212 years, 34 extreme drought years (16.0%) and 41 extreme pluvial years (19.3%) were identified; 4 of the 10 most extreme years occurred after 1980. The consistent cycle and correlation revealed that the Hailar runoff had a teleconnection with the El Niño–Southern Oscillation (ENSO). The sharply increasing variance at the end of the reconstruction, accompanied by the increasing intensity of short cycles (4–8 years), indicated that runoff variability in the Hailar River basin has enhanced in the late twentieth century. This is verified by the drastic fluctuations in water level and area of rivers and lakes, and the frequent shift of natural land cover types in the Hulun Buir area in recent decades. The intensified runoff variability can be connected with the concurrently enhanced ENSO activity. Our study is the first to identify the intensification of recent runoff variability in the semiarid to arid region in northeast China from a long-term perspective. With projected enhancement of ENSO activity, the Hailar River basin will face the increased risk of extreme hydrological events.

Corresponding author: Zhenju Chen, chenzhenju@syau.edu.cn

Abstract

Using tree-ring data of Pinus sylvestris var. mongolica from the Hulun Buir region in northeast China, 12 annual runoff series of the Hailar River spanning the past 202–216 years were established for the first time; these included 11 branches and one for the entire basin. These reconstructions, which could explain 29.4%–52.7% of the total variance for the measured runoffs during 1956–2006, performed well in statistical verification tests. In the whole basin’s reconstruction of 212 years, 34 extreme drought years (16.0%) and 41 extreme pluvial years (19.3%) were identified; 4 of the 10 most extreme years occurred after 1980. The consistent cycle and correlation revealed that the Hailar runoff had a teleconnection with the El Niño–Southern Oscillation (ENSO). The sharply increasing variance at the end of the reconstruction, accompanied by the increasing intensity of short cycles (4–8 years), indicated that runoff variability in the Hailar River basin has enhanced in the late twentieth century. This is verified by the drastic fluctuations in water level and area of rivers and lakes, and the frequent shift of natural land cover types in the Hulun Buir area in recent decades. The intensified runoff variability can be connected with the concurrently enhanced ENSO activity. Our study is the first to identify the intensification of recent runoff variability in the semiarid to arid region in northeast China from a long-term perspective. With projected enhancement of ENSO activity, the Hailar River basin will face the increased risk of extreme hydrological events.

Corresponding author: Zhenju Chen, chenzhenju@syau.edu.cn
Save