• Ashley, S. T., and W. S. Ashley, 2008: The storm morphology of deadly flooding events in the United States. Int. J. Climatol., 28, 493503, https://doi.org/10.1002/joc.1554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schar, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, https://doi.org/10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and et al. , 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, C. J. Hutton, and M. Sivapalan, 2016: Dominant flood generating mechanisms across the United States. Geophys. Res. Lett., 43, 43824390, https://doi.org/10.1002/2016GL068070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., A. Dai, Y. Zhang, and K. L. Rasmussen, 2020: Changes in convective available potential energy and convective inhibition under global warming. J. Climate, 33, 20252050, https://doi.org/10.1175/JCLI-D-19-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., R. M. Rasmussen, C. Liu, K. Ikeda, and A. F. Prein, 2020: A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dyn., 55, 343368, https://doi.org/10.1007/s00382-017-3787-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. S., 2001: Flash flood forecast and detection methods. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 481525.

    • Crossref
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dougherty, E., and K. L. Rasmussen, 2019: Climatology of flood-producing storms and their associated rainfall characteristics in the United States. Mon. Wea. Rev., 147, 38613877, https://doi.org/10.1175/MWR-D-19-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frans, C., E. Istanbullugolu, V. Mishra, F. Munoz-Arriola, and D. P. Lettenmaier, 2013: Are climatic or land cover changes the dominant cause of runoff trends in the Upper Mississippi River Basin? Geophys. Res. Lett., 40, 11041110, https://doi.org/10.1002/grl.50262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955966, https://doi.org/10.1175/BAMS-85-7-955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, T. W., 1991: Forecasting techniques utilized by the forecast branch of the national meteorological center during a major convective rainfall event. Wea. Forecasting, 6, 548564, https://doi.org/10.1175/1520-0434(1991)006<0548:FTUBTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., and et al. , 2018: Changes in hurricanes from a 13-yr convection-permitting pseudo–global warming simulation. J. Climate, 31, 36433657, https://doi.org/10.1175/JCLI-D-17-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018: Flash flood verification: Pondering precipitation proxies. J. Hydrometeor., 19, 17531776, https://doi.org/10.1175/JHM-D-18-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y. R., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae, 2013: Global flood risk under climate change. Nat. Climate Change, 3, 816821, https://doi.org/10.1038/nclimate1911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high-resolution regional climate model. J. Climate, 25, 57915806, https://doi.org/10.1175/JCLI-D-11-00562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, https://doi.org/10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., and et al. , 2017: Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Amer. Meteor. Soc., 98, 7993, https://doi.org/10.1175/BAMS-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., R. A. Houze Jr., and K. L. Rasmussen, 2014: Simulation of a flash flooding storm at the steep edge of the Himalayas. J. Hydrometeor., 15, 212228, https://doi.org/10.1175/JHM-D-12-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, https://doi.org/10.1175/JCLI-D-12-00392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., E. R. Wahl, A. W. Wood, D. B. Blatchford, and D. Llewellyn, 2017: Assessing recent declines in Upper Rio Grande runoff efficiency from a paleo-climate perspective. Geophys. Res. Lett., 44, 41244133, https://doi.org/10.1002/2017GL073253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Liu, C., and et al. , 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., F. Canova, and L. R. Hoxit, 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 18661877, https://doi.org/10.1175/1520-0493(1980)108<1866:MCOFFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., D. Swales, M. J. Mueller, M. Alexander, M. Hughes, and K. Malloy, 2018: An examination of inland-penetrating atmospheric river flood event under potential future thermodynamic conditions. J. Climate, 31, 62816297, https://doi.org/10.1175/JCLI-D-18-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, https://doi.org/10.1175/MWR-D-11-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu, M. Barlage, and R. Rasmussen, 2018: Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Climate Change, 8, 808812, https://doi.org/10.1038/s41558-018-0236-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2008: Significant weather event reviews: Flood event March 2008. Accessed 14 November 2019, https://www.weather.gov/lsx/events.

  • National Weather Service, 2011: Record floods of greater Nashville: Including flooding in middle Tennessee and western Kentucky, May 1–4, 2010. NOAA Service Assessment Rep., 93 pp., https://www.weather.gov/media/publications/assessments/Tenn_Flooding.pdf.

  • Nelson, B., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371394, https://doi.org/10.1175/WAF-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., R. S. Schumacher, and A. M. Keclik, 2016: The effect of the Balcones Escarpment on three cases of extreme precipitation in central Texas. Mon. Wea. Rev., 144, 119138, https://doi.org/10.1175/MWR-D-15-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2019: Storm events database. National Center for Environmental Information, accessed 15 November 2019, https://www.ncdc.noaa.gov/stormevents/.

  • Nowak, K., M. Hoerlin, B. Rajagopalan, and E. Zagona, 2012: Colorado River basin hydroclimatic variability. J. Climate, 25, 43894403, https://doi.org/10.1175/JCLI-D-11-00406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padrón, R. S., L. Gudmundsson, P. Greve, and S. I. Seneviratne, 2017: Large-scale controls of the surface water balance over land: Insights from a systematic review and meta-analysis. Water Resour. Res., 53, 96599678, https://doi.org/10.1002/2017WR021215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and et al. , 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017a: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland, and M. P. Clark, 2017b: Increased rainfall volume from future convective storms in the US. Nat. Climate Change, 7, 880884, https://doi.org/10.1038/s41558-017-0007-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark, 2020: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95110, https://doi.org/10.1007/s00382-017-3993-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu, 2020: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., 55, 383408, https://doi.org/10.1007/s00382-017-4000-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saharia, M., P. Kirsteetter, H. Vergara, J. J. Gourley, Y. Hong, and M. Giroud, 2017a: Mapping flash flood severity in the United States. J. Hydrometeor., 18, 397411, https://doi.org/10.1175/JHM-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saharia, M., P. Kirsteetter, H. Vergara, J. J. Gourley, and Y. Hong, 2017b: Characterization of floods in the United States. J. Hydrol., 548, 524535, https://doi.org/10.1016/j.jhydrol.2017.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Luthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and et al. , 2016: Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 137, 201216, https://doi.org/10.1007/s10584-016-1669-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, A., J. Basara, J. M. Sheperd, and S. Nelson, 2016: Insights into atmospheric contributors to urban flash flooding across the United States using an analysis of rawinsonde data and associated calculated parameters. J. Appl. Meteor. Climatol., 55, 313323, https://doi.org/10.1175/JAMC-D-14-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, https://doi.org/10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, S., Y. Mei, and E. M. Anagnostou, 2017: A comprehensive database of flood events in the contiguous United States from 2002 to 2013. Bull. Amer. Meteor. Soc., 98, 14931502, https://doi.org/10.1175/BAMS-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., 2019: 2018’s billion dollar disasters in context. NOAA, https://www.climate.gov/news-features/blogs/beyond-data/2018s-billion-dollar-disasters-context.

  • Smith, B. K., and J. A. Smith, 2015: The flashiest watersheds in the contiguous United States. J. Hydrometeor., 16, 23652381, https://doi.org/10.1175/JHM-D-14-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., F. M. Ralph, F. E. Barthold, D. W. Reynolds, and D. R. Novak, 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, https://doi.org/10.1175/WAF-D-13-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, W. B. Rossow, and G. Tselioudis, 2015: Increases in tropical rainfall drive by changes in frequency of organized deep convection. Nature, 519, 451454, https://doi.org/10.1038/nature14339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigg, M. A., and et al. , 2016: The credibility challenge for global fluvial flood risk analysis. Environ. Res. Lett., 11, 094014, https://doi.org/10.1088/1748-9326/11/9/094014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., K. Miller, M. D. Dettinger, R. Cifelli, D. Curtis, A. Dufour, J. R. Olsen, and A. M. Wilson, 2019: Hydroclimatic extremes as challenges for the water management community: Lessons from Oroville Dam and Hurricane Harvey. Bull. Amer. Meteor. Soc., 100, S9S14, https://doi.org/10.1175/BAMS-D-18-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncellli, 2004: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process., 13, 600612, https://doi.org/10.1109/TIP.2003.819861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, O. E. J., P. D. Bates, A. M. Smith, C. C. Sampson, K. A. Johnson, J. Fargione, and P. Morefield, 2018: Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett., 13, 034023, https://doi.org/10.1088/1748-9326/aaac65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., and G. T. Pederson, 2018: Investigating runoff efficiency in upper Colorado River streamflow over past centuries. Water Resour. Res., 54, 286300, https://doi.org/10.1002/2017WR021663.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 277 277 20
Full Text Views 70 70 10
PDF Downloads 96 96 10

Changes in Future Flash Flood–Producing Storms in the United States

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Flash floods are high-impact events that can result in massive destruction, such as the May 2010 flash floods in the south-central United States that resulted in over $2 billion of damage. While floods in the current climate are already destructive, future flood risk is projected to increase based on work using global climate models. However, global climate models struggle to resolve precipitation structure, intensity, and duration, which motivated the use of convection-permitting climate models that more accurately depict these precipitation processes on a regional scale due to explicit representation of convection. These high-resolution convection-permitting simulations have been used to examine future changes to rainfall, but not explicitly floods. This study aims to fill this gap by examining future changes to rainfall characteristics and runoff in flash flood–producing storms over the United States using convection-permitting models under a pseudo–global warming framework. Flash flood accumulated rainfall increases on average by 21% over the United States in a future climate. Storm-generated runoff increases by 50% on average, suggesting increased runoff efficiency in future flash flood–producing storms. In addition to changes in nonmeteorological factors, which were not explored in this study, increased future runoff is possible due to the 7.5% K−1 increase in future hourly maximum rain rates. Though this median change in rain rates is consistent with Clausius–Clapeyron theory, some storms exhibit increased future rain rates well above this, likely associated with storm dynamics. Overall, results suggest that U.S. cities might need to prepare for more intense flash flood–producing storms in a future climate.

Corresponding author: Erin Dougherty, edough@rams.colostate.edu

Abstract

Flash floods are high-impact events that can result in massive destruction, such as the May 2010 flash floods in the south-central United States that resulted in over $2 billion of damage. While floods in the current climate are already destructive, future flood risk is projected to increase based on work using global climate models. However, global climate models struggle to resolve precipitation structure, intensity, and duration, which motivated the use of convection-permitting climate models that more accurately depict these precipitation processes on a regional scale due to explicit representation of convection. These high-resolution convection-permitting simulations have been used to examine future changes to rainfall, but not explicitly floods. This study aims to fill this gap by examining future changes to rainfall characteristics and runoff in flash flood–producing storms over the United States using convection-permitting models under a pseudo–global warming framework. Flash flood accumulated rainfall increases on average by 21% over the United States in a future climate. Storm-generated runoff increases by 50% on average, suggesting increased runoff efficiency in future flash flood–producing storms. In addition to changes in nonmeteorological factors, which were not explored in this study, increased future runoff is possible due to the 7.5% K−1 increase in future hourly maximum rain rates. Though this median change in rain rates is consistent with Clausius–Clapeyron theory, some storms exhibit increased future rain rates well above this, likely associated with storm dynamics. Overall, results suggest that U.S. cities might need to prepare for more intense flash flood–producing storms in a future climate.

Corresponding author: Erin Dougherty, edough@rams.colostate.edu
Save