• Bao, J. W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, https://doi.org/10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, N. A., G. Villarini, M. A. Nayak, and K. White, 2017: Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers. Water Resour. Res., 53, 257269, https://doi.org/10.1002/2016WR019064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benke, A. C., and C. E. Cushing, 2005: Rivers of North America. Elsevier, 1168 pp.

  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181185, https://doi.org/10.1038/ngeo1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burn, D. H., M. Sharif, and K. Zhang, 2010: Detection of trends in hydrological extremes for Canadian watersheds. Hydrol. Processes, 24, 17811790, https://doi.org/10.1002/hyp.7625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burn, D. H., P. H. Whitfield, and M. Sharif, 2016: Identification of changes in floods and flood regimes in Canada using a peaks over threshold approach. Hydrol. Processes, 30, 33033314, https://doi.org/10.1002/hyp.10861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrough, P. A., and R. A. McDonnell, 1998: Principles of Geographical Information Systems. Oxford University Press, 333 pp.

  • Buttle, J. M., and et al. , 2016: Flood processes in Canada: Regional and special aspects. Can. Water Resour. J., 41, 730, https://doi.org/10.1080/07011784.2015.1131629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 221 pp.

  • Curry, C. L., S. U. Islam, F. W. Zwiers, and S. J. Déry, 2019: Atmospheric rivers increase future flood risk in Western Canada’s largest Pacific River. Geophys. Res. Lett., 46, 16511661, https://doi.org/10.1029/2018GL080720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demarchi, D. A., 2011: An Introduction to the Ecoregions of British Columbia. 3rd ed. Ecosystem Information Section, Ministry of Environment, 163 pp.

    • Search Google Scholar
    • Export Citation
  • Demaria, E. M. C., F. Dominguez, H. Hu, G. von Glinski, M. Robles, J. Skindlov, and J. Walter, 2017: Observed hydrologic impacts of landfalling atmospheric rivers in the Salt and Verde River Basins of Arizona, United States. Water Resour. Res., 53, 10 02510 042, https://doi.org/10.1002/2017WR020778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., K. Stahl, R. D. Moore, P. H. Whitfield, B. Menounos, and J. E. Burford, 2009: Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res., 45, W04426, https://doi.org/10.1029/2008WR006975.

    • Search Google Scholar
    • Export Citation
  • Déry, S. J., T. A. Stadnyk, M. K. MacDonald, and B. Gauli-Sharma, 2016: Recent trends and variability in river discharge across northern Canada. Hydrol. Earth Syst. Sci., 20, 48014818, https://doi.org/10.5194/hess-20-4801-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California - A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eaton, B., and R. D. Moore, 2010: Regional hydrology. Compendium of Forest Hydrology and Geomorphology in British Columbia, R. G. Pike et al., Eds., Land Management Handbook 66, Ministry of Forests and Range Research Branch/FORREX Forest Research Extension Partnership, 85110.

    • Search Google Scholar
    • Export Citation
  • ECCC, 2019: Flooding events in Canada: British Columbia. Accessed 21 March 2019, https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/floods/events-british-columbia.html.

    • Search Google Scholar
    • Export Citation
  • Espinoza, V., D. E. Waliser, B. Guan, D. A. Lavers, and F. M. Ralph, 2018: Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett., 45, 42994308, https://doi.org/10.1029/2017GL076968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, F. M. Ralph, E. J. Fetzer, and P. J. Neiman, 2016: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett., 43, 29642973, https://doi.org/10.1002/2016GL067978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hare, F. K., 1998: Canada’s climate: An overall perspective. The Surface Climates of Canada, W. G. Bailey, T. R. Oke, and W. R. Rouse, Eds., McGill-Queen’s University Press, 320.

    • Search Google Scholar
    • Export Citation
  • Hernández-Henríquez, M. A., A. R. Sharma, and S. J. Déry, 2017: Variability and trends in runoff in the rivers of British Columbia’s Coast and Insular Mountains. Hydrol. Processes, 31, 32693282, https://doi.org/10.1002/hyp.11257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, S. S., 1976: Landforms of British Columbia: A Physiographic Outline. British Columbia Department of Mines and Petroleum Resources Bulletin 48, 135 pp.

    • Search Google Scholar
    • Export Citation
  • Hollander, M., D. A. Wolfe, and E. Chicken, 2014: Nonparametric Statistical Methods. 3rd ed. John Wiley & Sons, 844 pp.

  • Islam, S. U., S. J. Déry, and A. T. Werner, 2017: Future climate change impacts on snow and water resources of the Fraser River Basin, British Columbia. J. Hydrometeor., 18, 473496, https://doi.org/10.1175/JHM-D-16-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosch, A. H., F. S. Anslow, and G. K. C. Clarke, 2012: High-resolution precipitation and temperature downscaling for glacier models. Climate Dyn., 38, 391409, https://doi.org/10.1007/s00382-010-0949-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, A., H. I. Reuter, A. Nelson, and E. Guevara, 2008: Hole-filled SRTM for the globe version 4, CGIAR-CSI SRTM 90m Database. CGIAR CSI, accessed 19 March 2018, https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., M. B. Parlange, and P. Naveau, 2002: Statistics of extremes in hydrology. Adv. Water Resour., 25, 12871304, https://doi.org/10.1016/S0309-1708(02)00056-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 202 pp.

  • Kingston, D. G., D. A. Lavers, and D. M. Hannah, 2016: Floods in the Southern Alps of New Zealand: The importance of atmospheric rivers. Hydrol. Processes, 30, 50635070, https://doi.org/10.1002/hyp.10982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. P., and M. D. Dettinger, 2017: Flood runoff in relation to water vapor transport by atmospheric rivers over the western United States, 1949–2015. Geophys. Res. Lett., 44, 11 45611 462, https://doi.org/10.1002/2017GL075399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the Northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700, https://doi.org/10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, https://doi.org/10.1175/JCLI-D-13-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. M. Ralph, D. E. Waliser, A. Gershunov, and M. D. Dettinger, 2015: Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett., 42, 56175625, https://doi.org/10.1002/2015GL064672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., S. Chiao, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, https://doi.org/10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loukas, A., L. Vasiliades, and N. R. Dalezios, 2000: Flood producing mechanisms identification in southern British Columbia, Canada. J. Hydrol., 227, 218235, https://doi.org/10.1016/S0022-1694(99)00182-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245 259, https://doi.org/10.2307/1907187.

  • Melone, A. M., 1985: Flood producing mechanisms in coastal British Columbia. Can. Water Resour. J., 10, 4664, https://doi.org/10.4296/cwrj1003046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, R., M. M. Brugman, J. A. Milbrandt, J. Goosen, Q. Geng, C. Emond, J. Bau, and A. Erfani, 2019: Impacts of hydrometeor drift on orographic precipitation: Two case studies of landfalling atmospheric rivers in British Columbia, Canada. Wea. Forecasting, 34, 12111237, https://doi.org/10.1175/WAF-D-18-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. D., D. L. Spittlehouse, P. H. Whitfield, and K. Stahl, 2010: Weather and climate. Compendium of Forest Hydrology and Geomorphology in British Columbia, K. D. Pike et al., Eds., Land Management Handbook 66, Ministry of Forests and Range Research Branch/FORREX Forest Research Extension Partnership, 4784.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neel, S., and et al. , 2015: Icefield-to-ocean linkages across the Northern Pacific coastal temperate rainforest ecosystem. BioScience, 65, 499512, https://doi.org/10.1093/biosci/biv027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2015: An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res. Atmos., 120, 11 17311 190, https://doi.org/10.1002/2015JD023586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PCIC, 2013: Atmospheric Rivers State of Knowledge Report. Pacific Climate Impacts Consortium, 19 pp., https://www.pacificclimate.org/sites/default/files/publications/AtmosphericReport Final Revised.pdf.

  • PSC, 2019: Public Safety Canada: Canadian Disaster Database. Accessed 21 March 2019, http://cdd.publicsafety.gc.ca.

  • Radić, V., A. J. Cannon, B. Menounos, and N. Gi, 2015: Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. J. Geophys. Res. Atmos., 120, 92799302, https://doi.org/10.1002/2015JD023279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, D. E. Kingsmill, P. O. G. Persson, A. B. White, E. T. Strem, E. D. Andrews, and R. C. Antweiler, 2003: The impact of a prominent rain shadow on flooding in California’s Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeor., 4, 12431264, https://doi.org/10.1175/1525-7541(2003)004<1243:TIOAPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and et al. , 2017: Atmospheric rivers emerge as a global science and applications focus. Bull. Amer. Meteor. Soc., 98, 19691973, https://doi.org/10.1175/BAMS-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynoldson, T. B., J. Culp, R. Lowell, and J. S. Richardson, 2005: Fraser River Basin. Rivers of North America, A. C. Benke and C. E. Cushing, Eds., Elsevier Inc., 697732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, J. S., and A. M. Milner, 2005: Pacific coast rivers of Canada and Alaska. Rivers of North America, A. C. Benke and C. E. Cushing, Eds., Elsevier, 735773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberge, A., J. R. Gyakum, and E. H. Atallah, 2009: Analysis of intense poleward water vapor transports into high latitudes of western North America. Wea. Forecasting, 24, 17321747, https://doi.org/10.1175/2009WAF2222198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rood, S. B., S. G. Foster, E. J. Hillman, A. Luek, and K. P. Zanewich, 2016: Flood moderation: Declining peak flows along some Rocky Mountain rivers and the underlying mechanism. J. Hydrol., 536, 174182, https://doi.org/10.1016/j.jhydrol.2016.02.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A. R., and S. J. Déry, 2020a: Variability and trends of landfalling atmospheric rivers along the Pacific Coast of northwestern North America. Int. J. Climatol., 40, 544558, https://doi.org/10.1002/joc.6227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A. R., and S. J. Déry, 2020b: Contribution of atmospheric rivers to annual, seasonal, and extreme precipitation across British Columbia and southeastern Alaska. J. Geophys. Res. Atmos., 125, e2019JD031823, https://doi.org/10.1029/2019JD031823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and et al. , 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over Northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, https://doi.org/10.1175/2009MWR2939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spry, C. M., K. E. Kohfeld, D. M. Allen, D. Dunkley, and K. Lertzman, 2014: Characterizing Pineapple Express storms in the Lower Mainland of British Columbia, Canada. Can. Water Resour. J., 39, 302323, https://doi.org/10.1080/07011784.2014.942574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahl, K., R. D. Moore, and I. G. McKendry, 2006: The role of synoptic-scale circulation in the linkage between large-scale ocean-atmosphere indices and winter surface climate in British Columbia, Canada. Int. J. Climatol., 26, 541560, https://doi.org/10.1002/joc.1268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., 2013: An Introduction to Atmospheric Thermodynamics. 2nd ed. Cambridge University Press, 199 pp.

  • Viessman, W., and G. L. Lewis, 2003: Introduction to Hydrology. 4th ed. Addison Wesley Longman, 751 pp.

  • Wang, S., L. Zhao, and R. R. Gillies, 2016: Synoptic and quantitative attributions of the extreme precipitation leading to the August 2016 Louisiana flood. Geophys. Res. Lett., 43, 11 80511 814, https://doi.org/10.1002/2016GL071460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé, 2015: Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, https://doi.org/10.1175/JHM-D-14-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, A. T., M. A. Schnorbus, R. R. Shrestha, A. J. Cannon, F. W. Zwiers, G. Dayon, and F. Anslow, 2019: A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Sci. Data, 6, 180299, https://doi.org/10.1038/sdata.2018.299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahmatkesh, Z., S. K. Jha, P. Coulibaly, and T. Stadnyk, 2019: An overview of river flood forecasting procedures in Canadian watersheds. Can. Water Resour. J., 44, 213229, https://doi.org/10.1080/07011784.2019.1601598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, https://doi.org/10.1029/94GL01710.

All Time Past Year Past 30 Days
Abstract Views 198 198 13
Full Text Views 45 45 3
PDF Downloads 52 52 4

Linking Atmospheric Rivers to Annual and Extreme River Runoff in British Columbia and Southeastern Alaska

View More View Less
  • 1 Natural Resources and Environmental Studies Program, University of Northern British Columbia, Prince George, British Columbia, Canada
  • | 2 Environmental Science and Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study quantifies the contribution of atmospheric rivers (ARs) to annual and extreme river runoff and evaluates the relationships between watershed characteristics and AR-related maximum river runoff across British Columbia and southeastern Alaska (BCSAK). Datasets used include gauged runoff from 168 unregulated watersheds, topographic characteristics of those watersheds, a regional AR catalog, and integrated vapor transport fields for water years (WYs) 1979–2016. ARs contribute ~22% of annual river runoff along the Coast and Insular Mountains watersheds, which decreases inland to ~11% in the watersheds of the Interior Mountains and Plateau. Average association between ARs and annual maximum river runoff attains >80%, >50%, and <50% along the watersheds of the western flanks of the Coast Mountains, the Interior Mountains, and Interior Plateau, respectively. There is no significant change in AR-related extreme annual maximum runoff across BCSAK during 1979–2016. AR conditions occur during 25 out of 32 of the flood-related natural disasters in British Columbia during WYs 1979–2016. AR-related annual maximum runoff magnitude is significantly higher than non-AR-related annual maximum runoff for 30% of the watersheds studied. Smaller and steeper watersheds closer to the coast are more susceptible to AR-related annual maximum runoff than their inland counterparts. These results illustrate the importance of AR activity as a major control for the distribution of peak runoff in BCSAK. This work provides insights on the hydrological response of watersheds of northwestern North America to landfalling ARs that may improve flood risk assessment and disaster management in this region.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-19-0281.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aseem R. Sharma, aseem.sharma@alumni.unbc.ca

Abstract

This study quantifies the contribution of atmospheric rivers (ARs) to annual and extreme river runoff and evaluates the relationships between watershed characteristics and AR-related maximum river runoff across British Columbia and southeastern Alaska (BCSAK). Datasets used include gauged runoff from 168 unregulated watersheds, topographic characteristics of those watersheds, a regional AR catalog, and integrated vapor transport fields for water years (WYs) 1979–2016. ARs contribute ~22% of annual river runoff along the Coast and Insular Mountains watersheds, which decreases inland to ~11% in the watersheds of the Interior Mountains and Plateau. Average association between ARs and annual maximum river runoff attains >80%, >50%, and <50% along the watersheds of the western flanks of the Coast Mountains, the Interior Mountains, and Interior Plateau, respectively. There is no significant change in AR-related extreme annual maximum runoff across BCSAK during 1979–2016. AR conditions occur during 25 out of 32 of the flood-related natural disasters in British Columbia during WYs 1979–2016. AR-related annual maximum runoff magnitude is significantly higher than non-AR-related annual maximum runoff for 30% of the watersheds studied. Smaller and steeper watersheds closer to the coast are more susceptible to AR-related annual maximum runoff than their inland counterparts. These results illustrate the importance of AR activity as a major control for the distribution of peak runoff in BCSAK. This work provides insights on the hydrological response of watersheds of northwestern North America to landfalling ARs that may improve flood risk assessment and disaster management in this region.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-19-0281.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aseem R. Sharma, aseem.sharma@alumni.unbc.ca

Supplementary Materials

    • Supplemental Materials (PDF 2.05 MB)
Save