• Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., P. Yao, L. Wang, and K. Liu, 2014: Summer rainfall variability in low-latitude highlands of China and subtropical Indian Ocean dipole. J. Climate, 27, 880892, https://doi.org/10.1175/JCLI-D-13-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavazos, T., 2000: Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. J. Climate, 13, 17181732, https://doi.org/10.1175/1520-0442(2000)013<1718:USOMTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, D. H., G. Huang, W. C. Tao, R. G. Wu, K. M. Hu, and C. F. Li, 2018: Interannual variation of precipitation over the Hengduan Mountains during rainy season. Int. J. Climatol., 38, 21122125, https://doi.org/10.1002/joc.5321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, D. H., W. C. Tao, L. Lau, Z. Q. Li, G. Huang, and P. F. Wang, 2019: Interdecadal variation of precipitation over the Hengduan Mountains during rainy seasons. J. Climate, 32, 37433760, https://doi.org/10.1175/JCLI-D-18-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, X., W. H. You, and J. M. Zheng, 2000: The drought and flood feature in Yunnan (in Chinese). Plateau Meteor., 19, 8490.

  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, https://doi.org/10.1175/BAMS-88-1-47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, L., T. Li, and W. D. Yu, 2014: Cause of severe droughts in Southwest China during 1951–2010. Climate Dyn., 43, 20332042, https://doi.org/10.1007/s00382-013-2026-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837849, https://doi.org/10.5194/hess-17-837-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., P.-E. Kirstetter, Y. E. Hong, J. J. Gourley, G. J. Huffman, W. A. Petersen, X. Xue, and M. R. Schwaller, 2018: To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT? J. Geophys. Res. Atmos., 123, 16941707, https://doi.org/10.1002/2017JD027606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghajarnia, N., A. Liaghat, and P. D. Arasteh, 2015: Comparison and evaluation of high resolution precipitation estimation products in Urmia Basin-Iran. Atmos. Res., 158–159, 5065, https://doi.org/10.1016/j.atmosres.2015.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., J. Meng, M. Rodell, and P. Houser, 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states. J. Hydrometeor., 6, 573598, https://doi.org/10.1175/JHM437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., S. Chen, A. M. Bao, J. J. Hu, A. S. Gebregiorgis, X. W. Xue, and X. H. Zhang, 2015: Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sens., 7, 71817211, https://doi.org/10.3390/rs70607181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Z. Y., and T. J. Zhou, 2012: Assessing the quality of APHRODITE high-resolution daily precipitation dataset over contiguous China (in Chinese). China J. Atmos. Sci., 36, 361373, https://doi.org/10.3878/j.issn.1006-9895.2011.11043.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations - The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, L., C. Funk, and P. Peterson, 2019: Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environ. Res. Lett., 14, 085007, https://doi.org/10.1088/1748-9326/ab2cae.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, D. M., S. J. Li, and Y. P. Zhang, 2007: The variation and regional differences of precipitation in the Longitudinal Range-Gorge the Region. China Sci. Bull., 52, 5973, https://doi.org/10.1007/s11434-007-7007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., M. Gebremichael, and T. Hopson, 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, https://doi.org/10.1175/2009JAMC2298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., D. Gochis, J. T. Cheng, K. L. Hsu, and S. Sorooshian, 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeor., 8, 469482, https://doi.org/10.1175/JHM574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., Y. Liu, L. Wang, and L. Wang, 2012: Analysis of the causes of severe drought occurring in Southwest China from the fall of 2009 to the spring of 2010 (in Chinese). China J. Atmos. Sci., 36, 443457, https://doi.org/10.3878/j.issn.1006-9895.2011.11101.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2015: TRMM and other data precipitation data set documentation. NASA TRMM Doc., 44 pp., http://pmm.nasa.gov/sites/default/files/imce/3B42_3B43_doc_V7.pdf.

  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X. W., and Y. Q. Li, 2011: Spatio-temporal variability of winter temperature and precipitation in Southwest China. J. Geogr. Sci., 21, 250262, https://doi.org/10.1007/s11442-011-0842-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, X. L., H. Shao, C. Zhang, and Y. Yan, 2016: The applicability evaluation of three satellite products in Tianshan Mountains (in Chinese). Ziran Ziyuan Xuebao, 31, 20742085, https://doi.org/10.11849/zrzyxb.20160057.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., N. Viltard, and M. Gosset, 2013: An error model for instantaneous satellite rainfall estimates: Evaluation of BRAIN-TMI over west Africa. Quart. J. Roy. Meteor. Soc., 139, 894911, https://doi.org/10.1002/qj.1964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and et al. , 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and et al. , 2017: Recent progress in Global Satellite Mapping of Precipitation (GSMAP) product. IEEE Int. Geoscience and Remote Sensing Symp. 2017, Fort Worth, TX, Institute of Electrical and Electronics Engineers, 2712–2715, https://doi.org/10.1109/IGARSS.2017.8127556.

    • Crossref
    • Export Citation
  • Li, G., J. Chen, X. Wang, X. Luo, D. Yang, W. Zhou, Y. Tan, and H. Yan, 2018: Remote impact of North Atlantic sea surface temperature on rainfall in southwestern China during boreal spring. Climate Dyn., 50, 541553, https://doi.org/10.1007/s00382-017-3625-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, N. N., and J. Li, 2017: Preliminary analysis of representativeness of precipitation observation over Southwest China (in Chinese). Plateau Meteor., 36, 119128.

    • Search Google Scholar
    • Export Citation
  • Li, X. Z., W. Zhou, C. Y. Li, and J. Song, 2013: Comparison of the annual cycles of moisture supply over southwest and southeast China. J. Climate, 26, 10 13910 158, https://doi.org/10.1175/JCLI-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y. G., D. M. He, J. M. Hu, and J. Cao, 2014: Variability of extreme precipitation over Yunnan Province, China 1960–2012. Int. J. Climatol., 35, 245258, https://doi.org/10.1002/joc.3977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y. H., H. M. Xu, Y. Y. Bai, Q. Li, and Z. N. He, 2010: Spatial-temporal characteristics of summer precipitation in the east of southwest China (in Chinese). Plateau Meteor., 29, 523530.

    • Search Google Scholar
    • Export Citation
  • Li, Y. H., C. H. Lu, H. M. Xu, B. Y. Feng, and Y. Wang, 2011: Contemporaneous relationships between summer atmospheric heat source over the Tibetan Plateau and drought/flood in eastern Southwest China. China J. Atmos. Sci., 35, 422434.

    • Search Google Scholar
    • Export Citation
  • Liu, L., J. Cao, D. M. He, and J. M. Hu, 2011: The interdecadal variability of heavy rainfall events in flood season over low-latitude highlands of China and associated causes (in Chinese). China J. Atmos. Sci., 35, 435443.

    • Search Google Scholar
    • Export Citation
  • Ma, Z. F., J. Peng, W. L. Gao, and H. Tian, 2006: Climate variation of southwest China in recent 40 years (in Chinese). Plateau Meteor., 25, 633642.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., P. C. Meyers, and M. D. Robinson, 2016: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeor., 17, 11011117, https://doi.org/10.1175/JHM-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEvoy, D. J., J. F. Mejia, and J. L. Huntington, 2014: Use of an observation network in the Great Basin to evaluate gridded climate data. J. Hydrometeor., 15, 19131931, https://doi.org/10.1175/JHM-D-14-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., M. Todd, M. Hulme, and P. Jones, 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18991922, https://doi.org/10.1002/joc.680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña-Arancibia, J. L., A. I. J. M. van Dijk, L. J. Renzullo, and M. Mulligan, 2013: Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and South and East Asia. J. Hydrometeor., 14, 13231333, https://doi.org/10.1175/JHM-D-12-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376, https://doi.org/10.1175/JCLI4253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 994 pp.

    • Search Google Scholar
    • Export Citation
  • Qi, D. M., C. Y. Zhou, Y. Q. Li, and Y. R. Chen, 2012: Cause analysis of climate changes in southwest China. Plateau Mountain Meteor. Res., 32, 3744.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, https://doi.org/10.1175/2008JHM1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, and M. Ziese, 2018: GPCC full data monthly product version 2018 at 0.25°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. DWD, accessed 10 October 2019, https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_025.

    • Crossref
    • Export Citation
  • Shen, Y., A. Y. Xiong, Y. Wang, and P. P. Xie, 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, https://doi.org/10.1029/2009JD012097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., C. Y. Li, and W. Zhou, 2014: High and low latitude types of the downstream influences of the North Atlantic Oscillation. Climate Dyn., 42, 10971111, https://doi.org/10.1007/s00382-013-1844-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., and E. N. Anagnostou, 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor., 13, 588603, https://doi.org/10.1175/JHM-D-11-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q. H., C. Y. Miao, Q. Y. Duan, H. Ashouri, S. Sorooshian, and K. L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., A. Ibrahim, Z. Duan, A. P. Cracknell, and V. Chaplot, 2015: Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens., 7, 15041528, https://doi.org/10.3390/rs70201504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G. Q., Z. Y. Zeng, D. Long, X. L. Guo, B. Yong, W. H. Zhang, and Y. Hong, 2016: Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is Day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeor., 17, 121137, https://doi.org/10.1175/JHM-D-15-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, H. Y., J. F. Gu, S. F. Yu, H. Zhang, and H. G. He, 2011: Analysis on diurnal variation of precipitation in southwest China (in Chinese). Plateau Meteor., 30, 376384.

    • Search Google Scholar
    • Export Citation
  • Tao, Y., C. Tang, and X. Duan, 2009: Land slide and debris flow hazards in Yunnan and their relationship with precipitation characteristics (in Chinese). J. Nat. Disaster, 18, 180186.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, https://doi.org/10.1029/2007JD009214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and A. H. Wang, 2017: Applicability assessment of GPCC and CRU precipitation products in China during 1901 to 2013 (in Chinese). Climatic Environ. Res., 22, 446462.

    • Search Google Scholar
    • Export Citation
  • Wang, L., G. Huang, W. Chen, W. Zhou, and W. Q. Wang, 2018: Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool. Climate Dyn., 51, 31113123, https://doi.org/10.1007/s00382-018-4068-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Wang, and C. Huang, 2018: Evaluating the applicability of GPM satellite precipitation Datain Heihe River basin (in Chinese). Ziran Ziyuan Xuebao, 33, 18471861.

    • Search Google Scholar
    • Export Citation
  • Wei, T., S. P. He, Q. Yan, W. J. Dong, and X. H. Wen, 2018: Decadal shift in west China autumn precipitation and its association with sea surface temperature. J. Geophys. Res. Atmos., 123, 835847, https://doi.org/10.1002/2017JD027092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 704 pp.

  • Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese). China J. Geophys., 56, 11021111.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., R. Joyce, S. R. Wu, S. H. Yoo, Y. Yarosh, F. Y. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H. L., J. P. Li, J. Feng, and J. Y. Mao, 2012: The asymmetric relationship between the winter NAO and the precipitation in Southwest China (in Chinese). Acta Meteor. Sin., 70, 12761291.

    • Search Google Scholar
    • Export Citation
  • Xu, R., F. Q. Tian, L. Yang, H. C. Hu, H. Lu, and A. Z. Hou, 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos., 122, 910924, https://doi.org/10.1002/2016JD025418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., D. Y. Gong, W. S. Wang, M. Hu, and R. Mao, 2012: Extreme drought event of 2009/2010 over southwestern China. Meteor. Atmos. Phys., 115, 173184, https://doi.org/10.1007/s00703-011-0172-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., J. P. Tang, Z. Xiong, and X. N. Dong, 2017: Evaluation of high-resolution gridded precipitation data in arid and semiarid regions: Heihe River basin, northwest China. J. Hydrometeor., 18, 30753101, https://doi.org/10.1175/JHM-D-16-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, S. K., and B. Yong, 2019: Evaluation of the GPM-based IMERG and GSMaP precipitation estimates over the Sichuan region (in Chinese). Acta Geogr. Sin., 74, 13051318, https://doi.org/10.11821/dlxb201907003.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. H. Tang, D. L. Chen, L. F. Li, X. C. Liu, and H. J. Cui, 2017: Tracing changes in atmospheric moisture supply to the drying Southwest China. Atmos. Chem. Phys., 17, 10 38310 393, https://doi.org/10.5194/acp-17-10383-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. L., J. Y. Zhang, and G. Z. Fan, 2014: Dominant modes of dry- and wet-season precipitation in Southwestern China (in Chinese). China J. Atmos. Sci., 38, 590602.

    • Search Google Scholar
    • Export Citation
  • Zhou, X. H., and Z. N. Xiao, 2015: Analysis on the variation characteristics of summer–autumn precipitation over the surrounding regions of southwest China and the corresponding circulation (in Chinese). China J. Atmos. Sci., 39, 653666.

    • Search Google Scholar
    • Export Citation
  • Zhu, G. F., D. H. Qin, Y. F. Liu, F. L. Chen, P. F. Hu, D. D. Chen, and K. Wang, 2017: Accuracy of TRMM precipitation data in the southwest monsoon region of China. Theor. Appl. Climatol., 129, 353362, https://doi.org/10.1007/s00704-016-1791-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziese, M., A. Rauthe-Schöch, A. Becker, P. Finger, A. Meyer-Christoffer, and U. Schneider, 2018: GPCC full data daily version.2018 at 1.0°: Daily land-surface precipitation from rain-gauges built on GTS-based and historic data. DWD, accessed 10 October 2019, https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 137 137 31
Full Text Views 82 82 13
PDF Downloads 105 105 19

Evaluation of High-Resolution Precipitation Products over Southwest China

View More View Less
  • 1 Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 University of Chinese Academy of Sciences, Beijing, China
  • | 3 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

The evaluation of gridded high-resolution precipitation products (HRPPs) is important in areas with complex topography, because rain gauges that are unevenly and sparsely distributed over an area cannot effectively reflect the spatial variabilities of the precipitation and related extremes in detail. In this study, the applicability of six satellite-based precipitation products (TMPA 3B42V7, IMERG, GSMaP-Gauge, CMORPH-CRT, PERSIANN-CDR, and GPCP) and five gauge-based precipitation products (APHRODITE, CN05.1, GPCC-D, GPCC-M, and CRU) over southwest China from 1998 to 2016 is evaluated by performing a comparison with meteorological station observations. The results show that GPCC-M exhibits the best performances for annual, seasonal, and monthly precipitation, which is supported by the lowest root-mean-square errors (RMSEs) for annual and seasonal precipitation and the lowest normalized root-mean-square error (NRMSE) for monthly precipitation. According to the NRMSE and critical success index (CSI), CN05.1 outperforms the other HRPPs at detecting daily precipitation; however, CN05.1 tends to overestimate the frequencies of light precipitation and underestimate the frequencies of heavy precipitation, which is reflected by the probability density function (PDF) for daily precipitation. The bias ratio (BIAS) and extreme precipitation indices show that IMERG shows numerous advantages over the other HRPPs in detecting extreme precipitation and estimating the precipitation intensity. Such results are helpful for future research on precipitation/extremes and related hydrometeorological disasters that occur throughout southwest China.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0045.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn

Abstract

The evaluation of gridded high-resolution precipitation products (HRPPs) is important in areas with complex topography, because rain gauges that are unevenly and sparsely distributed over an area cannot effectively reflect the spatial variabilities of the precipitation and related extremes in detail. In this study, the applicability of six satellite-based precipitation products (TMPA 3B42V7, IMERG, GSMaP-Gauge, CMORPH-CRT, PERSIANN-CDR, and GPCP) and five gauge-based precipitation products (APHRODITE, CN05.1, GPCC-D, GPCC-M, and CRU) over southwest China from 1998 to 2016 is evaluated by performing a comparison with meteorological station observations. The results show that GPCC-M exhibits the best performances for annual, seasonal, and monthly precipitation, which is supported by the lowest root-mean-square errors (RMSEs) for annual and seasonal precipitation and the lowest normalized root-mean-square error (NRMSE) for monthly precipitation. According to the NRMSE and critical success index (CSI), CN05.1 outperforms the other HRPPs at detecting daily precipitation; however, CN05.1 tends to overestimate the frequencies of light precipitation and underestimate the frequencies of heavy precipitation, which is reflected by the probability density function (PDF) for daily precipitation. The bias ratio (BIAS) and extreme precipitation indices show that IMERG shows numerous advantages over the other HRPPs in detecting extreme precipitation and estimating the precipitation intensity. Such results are helpful for future research on precipitation/extremes and related hydrometeorological disasters that occur throughout southwest China.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0045.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.20 MB)
Save