• Ban, N., J. Schmidli, and C. Schar, 2015: Heavy precipitation in a changing climate: Does short term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, https://doi.org/10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and et al. , 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., R. M. Rasmussen, C. Liu, K. Ikeda, and A. F. Prein, 2017: A new mechanism for warm season precipitation response to global warming based on convection-permitting simulations. Climate Dyn., 55, 343368, https://doi.org/10.1007/S00382-017-3787-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, T. M., M. D. Dettinger, D. R. Cayan, and H. G. Hidalog, 2011: Potential increase in floods in California’s Sierra Nevada under future climate projections. Climatic Change, 109, 7194, https://doi.org/10.1007/S10584-011-0298-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davenport, F. V., J. E. Herrera-Estrada, M. Burke, and N. S. Diffenbaugh, 2020: Flood size increases nonlinearly across the western United States in response to lower snow precipitation ratios. Water Resour. Res., 56, e2019WR025571, https://doi.org/10.1029/2019WR025571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dougherty, E., and K. L. Rasmussen, 2019: Climatology of flood-producing storms and their associated rainfall characteristics in the United States. Mon. Wea. Rev., 147, 38613877, https://doi.org/10.1175/MWR-D-19-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dougherty, E., and K. L. Rasmussen, 2020: Changes in flash flood-producing storms in the United States. J. Hydrometeor., 21, 22212236, https://doi.org/10.1175/JHM-D-20-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models add value to global model data: A review and selected examples. Bull. Amer. Meteor. Soc., 92, 11811192, https://doi.org/10.1175/2011BAMS3061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., and et al. , 2018: Changes in hurricanes from a 13-yr convection-permitting pseudo global warming simulation. J. Climate, 31, 36433657, https://doi.org/10.1175/JCLI-D-17-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North American from the large ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatchett, B., B. Daudert, C. Garner, N. Oakley, A. Putnam, and A. White, 2017: Winter snow level rise in the northern Sierra Nevada from 2008 to 2017. Water, 9, 899, https://doi.org/10.3390/w9110899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., A. D. Hall, and N. Berg, 2018: Anthropogenic warming impacts on today’s Sierra Nevada snowpack and flood risk. Geophys. Res. Lett., 45, 62156222, https://doi.org/10.1029/2018GL077432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., D. L. Swain, and D. B. Walton, 2020: Simulation and evaluating atmospheric river-induced precipitation extremes along the U.S. Pacific Coast: Case studies from 1980–2017. J. Geophys. Res. Atmos., 125, e2019JD031554, https://doi.org/10.1029/2019JD031554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junker, N. W., R. H. Grumm, R. Hart, L. F. Bosart, K. M. Bell, and F. J. Pereira, 2008: Use of normalized anomaly fields to anticipate extreme rainfall in the mountains of Northern California. Wea. Forecasting, 23, 336356, https://doi.org/10.1175/2007WAF2007013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E., N. M. Roberts, H. J . Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, https://doi.org/10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, https://doi.org/10.1175/JCLI-D-12-00392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Liu, C., and et al. , 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorente-Plazas, R., T. P. Mitchell, G. Mauger, and E. P. Salathé Jr., 2018: Local enhancement of extreme precipitation during atmospheric rivers as simulated in a regional climate model. J. Hydrometeor., 19, 14291446, https://doi.org/10.1175/JHM-D-17-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., F. Canova, and L. R. Hoxit, 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 18661877, https://doi.org/10.1175/1520-0493(1980)108<1866:MCOFFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., M. Alexander, J. D. Scott, and J. Barsugli, 2013: High-resolution downscaled simulations of warms-season extreme precipitation events in the Colorado Front Range under past and future climates. J. Climate, 26, 86718689, https://doi.org/10.1175/JCLI-D-12-00744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., D. Swales, M. J. Mueller, M. Alexander, M. Hughes, and K. Malloy, 2018: An examination of inland-penetrating atmospheric river flood event under potential future thermodynamic conditions. J. Climate, 31, 62816297, https://doi.org/10.1175/JCLI-D-18-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu, M. Barlage, and R. Rasmussen, 2018: Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Climate Change, 8, 808812, https://doi.org/10.1038/s41558-018-0236-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. Hughes, K. M. Mahoney, J. M. Cordeira, and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, https://doi.org/10.1175/JHM-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017a: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark, 2017b: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95110, https://doi.org/10.1007/s00382-017-3993-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, and G. J. Holland, 2017c: Increased rainfall volume from future convective storms in the US. Nat. Climate Change, 7, 880884, https://doi.org/10.1038/s41558-017-0007-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickman, and D. W. Reynolds, 2011: A multi-scale observational case study of a Pacific atmospheric river exhibiting tropical-extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, https://doi.org/10.1175/2010MWR3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and et al. , 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269288, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu, 2017: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., 55, 383408, https://doi.org/10.1007/S00382-017-4000-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saharia, M., P. Kirsteetter, H. Vergara, J. J. Gourley, Y. Hong, and M. Giroud, 2017b: Characterization of floods in the United States. J. Hydrol., 548, 524535, https://doi.org/10.1016/j.jhydrol.2017.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M., A. Hall, F. Sun, D. Walton, and N. Berg, 2017: Significant and inevitable end-of-twenty-first-century advances in surface runoff timing in California’s Sierra Nevada. J. Hydrometeor., 18, 31813197, https://doi.org/10.1175/JHM-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, S., Y. Mei, and E. M. Anagnostou, 2017: A comprehensive database of flood events in the contiguous United States from 2002 to 2013. Bull. Amer. Meteor. Soc., 98, 14931502, https://doi.org/10.1175/BAMS-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and et al. , 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., K. Miller, M. D. Dettinger, R. Cifelli, D. Curtis, A. Dufour, J. R. Olsen, and A. M. Wilson, 2018: Hydroclimatic extremes as challenges for the water management community: Lessons from Oroville Dam and Hurricane Harvey. Bull. Amer. Meteor. Soc., 100, S9S14, https://doi.org/10.1175/BAMS-D-18-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncellli, 2004: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process., 13, 600612, https://doi.org/10.1109/TIP.2003.819861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., B. J. Moore, D. J. Gottas, and P. J. Neiman, 2019: Winter storm conditions leading to excessive runoff above California’s Oroville Dam during January and February 2017. Bull. Amer. Meteor. Soc., 100, 5570, https://doi.org/10.1175/BAMS-D-18-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, A. M., K. T. Skelly, and J. M. Cordeira, 2017: High-impact hydrologic events and atmospheric rivers in California: An investigation using the NCEI Storm Events Database. Geophys. Res. Lett., 44, 33933401, https://doi.org/10.1002/2017GL073077.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 203 203 30
Full Text Views 62 62 5
PDF Downloads 73 73 6

Future Changes in the Hydrologic Cycle Associated with Flood-Producing Storms in California

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Department of Atmospheric Science, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

California receives much of its precipitation from cool-season atmospheric rivers, which contribute to water resources and flooding. In winter 2017, a large number of atmospheric rivers caused anomalous winter precipitation, near-saturated soils, and a partial melting of snowpack, which led to excessive runoff that damaged the emergency spillway of the Oroville Dam. Given the positive and negative impacts ARs have in California, it is necessary to understand how they will change in a future climate. While prior studies have examined future changes in the frequency of atmospheric rivers impacting the West Coast of the United States, these studies primarily use coarse global climate models that are unable to resolve the complex terrain of this region. Such a limitation is overcome by using a high-resolution convection-permitting regional climate model, which resolves complex topography and orographic rainfall processes that are the main drivers of heavy precipitation in landfalling atmospheric rivers. This high-resolution model is used to examine changes to precipitation and runoff in California’s cool season from 2002 to 2013, particularly in flood-producing storms associated with atmospheric rivers, in a future, warmer climate using a pseudo–global warming approach. In 45 flood-producing storms, precipitation and runoff increase by 21%–26% and 15%–34%, respectively, while SWE decreases by 32%–90%, with the greatest changes at mid-elevations. These trends are consistent with future precipitation changes during the entire cool season. Results suggest more intense floods and less snowpack available for water resources in the future, which should be carefully considered in California’s future water management plans.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Erin Dougherty, edough@rams.colostate.edu

Abstract

California receives much of its precipitation from cool-season atmospheric rivers, which contribute to water resources and flooding. In winter 2017, a large number of atmospheric rivers caused anomalous winter precipitation, near-saturated soils, and a partial melting of snowpack, which led to excessive runoff that damaged the emergency spillway of the Oroville Dam. Given the positive and negative impacts ARs have in California, it is necessary to understand how they will change in a future climate. While prior studies have examined future changes in the frequency of atmospheric rivers impacting the West Coast of the United States, these studies primarily use coarse global climate models that are unable to resolve the complex terrain of this region. Such a limitation is overcome by using a high-resolution convection-permitting regional climate model, which resolves complex topography and orographic rainfall processes that are the main drivers of heavy precipitation in landfalling atmospheric rivers. This high-resolution model is used to examine changes to precipitation and runoff in California’s cool season from 2002 to 2013, particularly in flood-producing storms associated with atmospheric rivers, in a future, warmer climate using a pseudo–global warming approach. In 45 flood-producing storms, precipitation and runoff increase by 21%–26% and 15%–34%, respectively, while SWE decreases by 32%–90%, with the greatest changes at mid-elevations. These trends are consistent with future precipitation changes during the entire cool season. Results suggest more intense floods and less snowpack available for water resources in the future, which should be carefully considered in California’s future water management plans.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Erin Dougherty, edough@rams.colostate.edu
Save