• Achberger, C., M.-L. Linderson, and D. Chen, 2003: Performance of the Rossby Centre regional atmospheric model in Southern Sweden: Comparison of simulated and observed precipitation. Theor. Appl. Climatol., 76, 219234, https://doi.org/10.1007/s00704-003-0015-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahrens, B., 2003: Rainfall downscaling in an alpine watershed applying a multiresolution approach. J. Geophys. Res., 108, 8388, https://doi.org/10.1029/2001JD001485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allcroft, D. J., and C. A. Glasbey, 2003: A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation. J. Roy. Stat. Soc., 52C, 487498, https://doi.org/10.1111/1467-9876.00419.

    • Search Google Scholar
    • Export Citation
  • Badas, M. G., R. Deidda, and E. Piga, 2006: Modulation of homogeneous space-time rainfall cascades to account for orographic influences. Nat. Hazards Earth Syst. Sci., 6, 427437, https://doi.org/10.5194/nhess-6-427-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellier, J., I. Zin, and G. Bontron, 2017: Sample stratification in verification of ensemble forecasts of continuous scalar variables: Potential benefits and pitfalls. Mon. Wea. Rev., 145, 35293544, https://doi.org/10.1175/MWR-D-16-0487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300, https://doi.org/10.1111/J.2517-6161.1995.TB02031.X.

    • Search Google Scholar
    • Export Citation
  • Brune, S., F. Kapp, and P. Friederichs, 2018: A wavelet-based analysis of convective organization in ICON large-eddy simulations. Quart. J. Roy. Meteor. Soc., 144, 28122829, https://doi.org/10.1002/qj.3409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buschow, S., J. Pidstrigach, and P. Friederichs, 2019: Assessment of wavelet-based spatial verification by means of a stochastic precipitation model (wv_verif v0.1.0). Geosci. Model Dev., 12, 34013418, https://doi.org/10.5194/gmd-12-3401-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, G., and E. I. George, 1992: Explaining the Gibbs sampler. Amer. Stat., 46, 167174, https://doi.org/10.2307/2685208.

  • Cressie, N., and D. M. Hawkins, 1980: Robust estimation of the variogram: I. J. Int. Assoc. Math. Geol., 12, 115125, https://doi.org/10.1007/BF01035243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deidda, R., 2000: Rainfall downscaling in a space-time multifractal framework. Water Resour. Res., 36, 17791794, https://doi.org/10.1029/2000WR900038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., E. Foufoula-Georgiou, and G. Lerman, 2012: Sparse regularization for precipitation downscaling. J. Geophys. Res., 117, D08107, https://doi.org/10.1029/2011JD017057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckley, I. A., G. P. Nason, and R. L. Treloar, 2010: Locally stationary wavelet fields with application to the modelling and analysis of image texture. J. Roy. Stat. Soc., 59C, 595616, https://doi.org/10.1111/j.1467-9876.2009.00721.x.

    • Search Google Scholar
    • Export Citation
  • Ekström, M., 2016: Metrics to identify meaningful downscaling skill in WRF simulations of intense rainfall events. Environ. Modell. Software, 79, 267284, https://doi.org/10.1016/j.envsoft.2016.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erdin, R., C. Frei, and H. R. Künsch, 2012: Data transformation and uncertainty in geostatistical combination of radar and rain gauges. J. Hydrometeor., 13, 13321346, https://doi.org/10.1175/JHM-D-11-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraris, L., S. Gabellani, N. Rebora, and A. Provenzale, 2003: A comparison of stochastic models for spatial rainfall downscaling. Water Resour. Res., 39, 1368, https://doi.org/10.1029/2003WR002504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foufoula-Georgiou, E., A. M. Ebtehaj, S. Zhang, and A. Hou, 2014: Downscaling satellite precipitation with emphasis on extremes: A variational ℓ1-norm regularization in the derivative domain. Surv. Geophys., 35, 765783, https://doi.org/10.1007/s10712-013-9264-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, https://doi.org/10.1002/joc.1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, P., and A. N. Rousseau, 2014: Stochastic spatial disaggregation of extreme precipitation to validate a regional climate model and to evaluate climate change impacts over a small watershed. Hydrol. Earth Syst. Sci., 18, 16951704, https://doi.org/10.5194/hess-18-1695-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, P., A. N. Rousseau, A. Mailhot, and D. Caya, 2012: Spatial disaggregation of mean areal rainfall using Gibbs sampling. J. Hydrometeor., 13, 324337, https://doi.org/10.1175/JHM-D-11-034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, P., A. N. Rousseau, A. Mailhot, and D. Caya, 2013: A Gibbs sampling disaggregation model for orographic precipitation. Int. J. Appl. Earth Obs. Geoinf., 22, 1626, https://doi.org/10.1016/j.jag.2011.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galway, J. G., 1956: The lifted index as a predictor of latent instability. Bull. Amer. Meteor. Soc., 37, 528529, https://doi.org/10.1175/1520-0477-37.10.528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. A. Ahijevych, B. G. Brown, and E. E. Ebert, 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 13651376, https://doi.org/10.1175/2010BAMS2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., J. L. Wilson, and H. Xie, 2009: A cluster-optimizing regression-based approach for precipitation spatial downscaling in mountainous terrain. J. Hydrol., 375, 578588, https://doi.org/10.1016/j.jhydrol.2009.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and M. Scheuerer, 2018: Probabilistic precipitation forecast postprocessing using quantile mapping and rank-weighted best-member dressing. Mon. Wea. Rev., 146, 40794098, https://doi.org/10.1175/MWR-D-18-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, D., and E. Foufoula-Georgiou, 2001: Subgrid variability and stochastic downscaling of modeled clouds: Effects on radiative transfer computations for rainfall retrieval. J. Geophys. Res., 106, 10 34910 362, https://doi.org/10.1029/2000JD900797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., N. W. Chaney, M. Schleiss, and J. Sheffield, 2016: Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res., 52, 82178237, https://doi.org/10.1002/2016WR019034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hou, D., and et al. , 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, https://doi.org/10.1175/JHM-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd ed. John Wiley & Sons, 274 pp.

    • Search Google Scholar
    • Export Citation
  • Kapp, F., P. Friederichs, S. Brune, and M. Weniger, 2018: Spatial verification of high-resolution ensemble precipitation forecasts using local wavelet spectra. Meteor. Z., 27, 467480, https://doi.org/10.1127/metz/2018/0903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lam, S. K., A. Pitrou, and S. Seibert, 2015: Numba: A LLVM-based python JIT compiler. Proc. Second Workshop on the LLVM Compiler Infrastructure in HPC, Austin, TX, ACM, 7, https://doi.org/10.1145/2833157.2833162.

    • Crossref
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/pdfpapers/83847.pdf.

  • Maraun, D., and et al. , 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2011: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, 430 pp.

  • Marzban, C., and S. Sandgathe, 2009: Verification with variograms. Wea. Forecasting, 24, 11021120, https://doi.org/10.1175/2009WAF2222122.1.

  • May, R. M., S. C. Arms, P. Marsh, E. Bruning, J. R. Leeman, K. Goebbert, J. E. Thielen, and Z. Bruck, 2019: MetPy: A Python package for meteorological data. GitHub, https://github.com/Unidata/MetPy.

  • Miller, R. C., 1975: Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Central. Tech. Rep. 200, Air Weather Service, 177 pp.

  • Nelder, J. A., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308313, https://doi.org/10.1093/comjnl/7.4.308.

  • Onibon, H., T. Lebel, A. Afouda, and G. Guillot, 2004: Gibbs sampling for conditional spatial disaggregation of rain fields. Water Resour. Res., 40, W08401, https://doi.org/10.1029/2003WR002009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, N.-W., 2013: Spatial downscaling of TRMM precipitation using geostatistics and fine scale environmental variables. Adv. Meteor., 2013, 19, https://doi.org/10.1155/2013/237126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., and E. Foufoula-Georgiou, 1996a: Linkage of scaling and thermodynamic parameters of rainfall: Results from midlatitude mesoscale convective systems. J. Geophys. Res., 101, 74317448, https://doi.org/10.1029/95JD02372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., and E. Foufoula-Georgiou, 1996b: Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J. Geophys. Res., 101, 26 34726 361, https://doi.org/10.1029/96JD01870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., and S. Lewis, 1992: How many iterations in the Gibbs sampler? Bayesian Statistics 4, J. M. Bernardo et al., Ed., Oxford University Press, 763–773.

    • Crossref
    • Export Citation
  • Raut, B. A., A. W. Seed, M. J. Reeder, and C. Jakob, 2018: A multiplicative cascade model for high-resolution space-time downscaling of rainfall. J. Geophys. Res. Atmos., 123, 20502067, https://doi.org/10.1002/2017JD027148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raut, B. A., M. J. Reeder, C. Jakob, and A. W. Seed, 2019: Stochastic space-time downscaling of rainfall using event-based multiplicative cascade simulations. J. Geophys. Res. Atmos., 124, 38893902, https://doi.org/10.1029/2018JD029343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebora, N., L. Ferraris, J. Von Hardenberg, and A. Provenzale, 2006a: Rainfall downscaling and flood forecasting: A case study in the Mediterranean area. Nat. Hazards Earth Syst. Sci., 6, 611619, https://doi.org/10.5194/nhess-6-611-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebora, N., L. Ferraris, J. von Hardenberg, and A. Provenzale, 2006b: RainFARM: Rainfall downscaling by a filtered autoregressive model. J. Hydrometeor., 7, 724738, https://doi.org/10.1175/JHM517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salas, F. R., and et al. , 2018: Towards real-time continental scale streamflow simulation in continuous and discrete space. J. Amer. Water Resour. Assoc., 54, 727, https://doi.org/10.1111/1752-1688.12586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616640, https://doi.org/10.1214/13-STS443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuurmans, J., and M. Bierkens, 2007: Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model. Hydrol. Earth Syst. Sci., 11, 677693, https://doi.org/10.5194/hess-11-677-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuurmans, J., M. Bierkens, E. Pebesma, and R. Uijlenhoet, 2007: Automatic prediction of high-resolution daily rainfall fields for multiple extents: The potential of operational radar. J. Hydrometeor., 8, 12041224, https://doi.org/10.1175/2007JHM792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Showalter, A., 1947: A stability index for thunderstorm forecasting. Bull. Amer. Meteor. Soc., 34, 250252, https://doi.org/10.1175/1520-0477-34.6.250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terzago, S., E. Palazzi, and J. Hardenberg, 2018: Stochastic downscaling of precipitation in complex orography: A simple method to reproduce a realistic fine-scale climatology. Nat. Hazards Earth Syst. Sci., 18, 28252840, https://doi.org/10.5194/nhess-18-2825-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonevsky, I., C. A. Doswell III, and H. E. Brooks, 2018: Early warnings of severe convection using the ECMWF Extreme Forecast Index. Wea. Forecasting, 33, 857871, https://doi.org/10.1175/WAF-D-18-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR, 2019: MetPy. UCAR Unidata, https://doi.org/10.5065/D6WW7G29.

  • Viterbo, F., and et al. , 2020: A multi-scale, hydro-meteorological forecast evaluation of National Water Model forecasts of the May 2018 Ellicott City, Maryland, flood. J. Hydrometeor., 21, 475499, https://doi.org/10.1175/JHM-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weniger, M., F. Kapp, and P. Friederichs, 2017: Spatial verification using wavelet transforms: A review. Quart. J. Roy. Meteor. Soc., 143, 120136, https://doi.org/10.1002/qj.2881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, G., X. Xu, M. Liu, A. Y. Sun, and K. Wang, 2015: Spatial downscaling of TRMM precipitation product using a combined multifractal and regression approach: Demonstration for South China. Water, 7, 30833102, https://doi.org/10.3390/w7063083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Younger, P. M., J. E. Freer, and K. J. Beven, 2009: Detecting the effects of spatial variability of rainfall on hydrological modelling within an uncertainty analysis framework. Hydrol. Processes, 23, 19882003, https://doi.org/10.1002/hyp.7341.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 120 120 9
Full Text Views 30 30 2
PDF Downloads 41 41 1

Precipitation Downscaling with Gibbs Sampling: An Improved Method for Producing Realistic, Weather-Dependent, and Anisotropic Fields

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Physical Sciences Laboratory, Boulder, Colorado
  • | 2 NOAA/Physical Sciences Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Downscaling precipitation fields is a necessary step in a number of applications, especially in hydrological modeling where the meteorological forcings are frequently available at too coarse resolution. In this article, we review the Gibbs sampling disaggregation model (GSDM), a stochastic downscaling technique originally proposed by Gagnon et al. The method is capable of introducing realistic, weather-dependent, and possibly anisotropic fine-scale details, while preserving the mean rain rate over the coarse-scale pixels. The main developments compared to the former version are (i) an adapted Gibbs sampling algorithm that enforces the downscaled fields to have a similar texture to that of the analysis fields, (ii) an extensive test of various meteorological predictors for controlling specific aspects of the texture such as the anisotropy and the spatial variability, and (iii) a review of the regression equations used in the model for defining the conditional distributions. A perfect-model experiment is conducted over a domain in the southeastern United States. The metrics used for verification are based on the concept of gridded, stratified variogram, which is introduced as an effective way of reproducing the abilities of human eyes for detecting differences in the field texture. Results indicate that the best overall performances are obtained with the most sophisticated, predictor-based GSDM variant. The 600-hPa wind is found to be the best year-round predictor for controlling the anisotropy. For the spatial variability, kinematic predictors such as wind shear are found to be best during the convective periods, while instability indices are more informative elsewhere.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0069.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joseph Bellier, joseph.bellier@noaa.gov

Abstract

Downscaling precipitation fields is a necessary step in a number of applications, especially in hydrological modeling where the meteorological forcings are frequently available at too coarse resolution. In this article, we review the Gibbs sampling disaggregation model (GSDM), a stochastic downscaling technique originally proposed by Gagnon et al. The method is capable of introducing realistic, weather-dependent, and possibly anisotropic fine-scale details, while preserving the mean rain rate over the coarse-scale pixels. The main developments compared to the former version are (i) an adapted Gibbs sampling algorithm that enforces the downscaled fields to have a similar texture to that of the analysis fields, (ii) an extensive test of various meteorological predictors for controlling specific aspects of the texture such as the anisotropy and the spatial variability, and (iii) a review of the regression equations used in the model for defining the conditional distributions. A perfect-model experiment is conducted over a domain in the southeastern United States. The metrics used for verification are based on the concept of gridded, stratified variogram, which is introduced as an effective way of reproducing the abilities of human eyes for detecting differences in the field texture. Results indicate that the best overall performances are obtained with the most sophisticated, predictor-based GSDM variant. The 600-hPa wind is found to be the best year-round predictor for controlling the anisotropy. For the spatial variability, kinematic predictors such as wind shear are found to be best during the convective periods, while instability indices are more informative elsewhere.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0069.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joseph Bellier, joseph.bellier@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 1.36 MB)
Save