• Adhikary, P. P., and J. Dash, 2018: Morphometric analysis of Katra Watershed of Eastern Ghats: A GIS approach. Int. J. Curr. Microbiol. Appl. Sci., 7, 16511665, https://doi.org/10.20546/ijcmas.2018.703.198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aziz, R., A. Rahman, G. Fang, and S. Shrestha, 2014: Application of artificial neural networks in regional flood frequency analysis: A case study for Australia. Stochastic Environ. Res. Risk Assess., 28, 541554, https://doi.org/10.1007/s00477-013-0771-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balshi, M. S., A. D. McGuire, P. Duffy, M. Flannigan, J. Walsh, and J. Melillo, 2009: Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biol., 15, 578600, https://doi.org/10.1111/j.1365-2486.2008.01679.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayentin, L., S. El Adlouni, T. B. M. J. Ouarda, P. Gosselin, B. Doyon, and F. Chebana, 2010: Spatial variability of climate effects on ischemic heart disease hospitalization rates for the period 1989-2006 in Quebec, Canada. Int. J. Health Geogr., 9, 5, https://doi.org/10.1186/1476-072X-9-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. M., 1995: Neural Networks for Pattern Recognition. Oxford University Press, 482 pp.

  • Bond, N. R., and M. J. Kennard, 2017: Prediction of hydrologic characteristics for ungauged catchments to support hydroecological modeling. Water Resour. Res., 53, 87818794, https://doi.org/10.1002/2017WR021119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booker, D. J., and R. A. Woods, 2014: Comparing and combining physically-based and empirically-based approaches for estimating the hydrology of ungauged catchments. J. Hydrol., 508, 227239, https://doi.org/10.1016/j.jhydrol.2013.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Brunner, M. I., R. Furrer, A. E. Sikorska, D. Viviroli, J. Seibert, and A.-C. Favre, 2018: Synthetic design hydrographs for ungauged catchments: A comparison of regionalization methods. Stochastic Environ. Res. Risk Assess., 32, 19932023, https://doi.org/10.1007/s00477-018-1523-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burn, D. H., 1990a: An appraisal of the “region of influence” approach to flood frequency analysis. Hydrol. Sci. J., 35, 149165, https://doi.org/10.1080/02626669009492415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burn, D. H., 1990b: Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour. Res., 26, 22572265, https://doi.org/10.1029/WR026i010p02257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chebana, F., and T. B. M. J. Ouarda, 2008: Depth and homogeneity in regional flood frequency analysis. Water Resour. Res., 44, W11422, https://doi.org/10.1029/2007WR006771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chebana, F., C. Charron, T. B. M. J. Ouarda, and B. Martel, 2014: Regional frequency analysis at ungauged sites with the generalized additive model. J. Hydrometeor., 15, 24182428, https://doi.org/10.1175/JHM-D-14-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutler, D. R., T. C. Edwards Jr., K. H. Beard, A. Cutler, K. T. Hess, J. Gibson, and J. J. Lawler, 2007: Random forests for classification in ecology. Ecology, 88, 27832792, https://doi.org/10.1890/07-0539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deo, R. C., O. Kisi, and V. P. Singh, 2017: Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos. Res., 184, 149175, https://doi.org/10.1016/j.atmosres.2016.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diez-Sierra, J., and M. del Jesus, 2019: Subdaily rainfall estimation through daily rainfall downscaling using random forests in Spain. Water, 11, 125, https://doi.org/10.3390/w11010125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durocher, M., F. Chebana, and T. B. M. J. Ouarda, 2016: On the prediction of extreme flood quantiles at ungauged locations with spatial copula. J. Hydrol., 533, 523532, https://doi.org/10.1016/j.jhydrol.2015.12.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emamgolizadeh, S., S. M. Bateni, D. Shahsavani, T. Ashrafi, and H. Ghorbania, 2015: Estimation of soil cation exchange capacity using genetic expression programming (GEP) and multivariate adaptive regression splines (MARS). J. Hydrol., 529, 15901600, https://doi.org/10.1016/j.jhydrol.2015.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 1991: Multivariate adaptive regression splines. Ann. Stat., 19, 167, https://doi.org/10.1214/aos/1176347973.

  • Gal, Y., and Z. Ghahramani, 2016: A theoretically grounded application of dropout in recurrent neural networks. 30th Conf. on Advances in Neural Information Processing Systems, Barcelona, Spain, NIPS, 9 pp., https://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf.

  • Geurts, P., A. Irrthum, and L. Wehenkel, 2009: Supervised learning with decision tree-based methods in computational and systems biology. Mol. Biosyst., 5, 15931605, https://doi.org/10.1039/b907946g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GREHYS, 1996: Presentation and review of some methods for regional flood frequency analysis. J. Hydrol., 186, 6384, https://doi.org/10.1016/S0022-1694(96)03042-9.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., and R. Tibshirani, 1987: Generalized additive models: Some applications. J. Amer. Stat. Assoc., 82, 371386, https://doi.org/10.1080/01621459.1987.10478440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., and J. R. M. Wallis, 2005: Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, 244 pp.

    • Search Google Scholar
    • Export Citation
  • Hotelling, H., 1935: The most predictable criterion. J. Educ. Psychol., 26, 139142, https://doi.org/10.1037/h0058165.

  • Ibbitt, R., and R. Woods, 2004: Re-scaling the topographic index to improve the representation of physical processes in catchment models. J. Hydrol., 293, 205218, https://doi.org/10.1016/j.jhydrol.2004.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenson, S. K., and J. O. Domingue, 1988: Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens., 54, 15931600.

    • Search Google Scholar
    • Export Citation
  • Jung, K., P. R. Marpu, and T. B. M. J. Ouarda, 2017: Impact of river network type on the time of concentration. Arabian J. Geosci., 10, 546, https://doi.org/10.1007/s12517-017-3323-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khalil, B., T. B. M. J. Ouarda, and A. St-Hilaire, 2011: Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J. Hydrol., 405, 277287, https://doi.org/10.1016/j.jhydrol.2011.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kisi, O., 2015: Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol., 528, 312320, https://doi.org/10.1016/j.jhydrol.2015.06.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kisi, O., and K. S. Parmar, 2016: Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J. Hydrol., 534, 104112, https://doi.org/10.1016/j.jhydrol.2015.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, S., and C. L. Giles, 2000: Overfitting and neural networks: Conjugate gradient and backpropagation. Proc. IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks, Como, Italy, IEEE, 114119, https://doi.org/10.1109/IJCNN.2000.857823.

    • Crossref
    • Export Citation
  • Leathwick, J. R., D. Rowe, J. Richardson, J. Elith, and T. Hastie, 2005: Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshwater Biol., 50, 20342052, https://doi.org/10.1111/j.1365-2427.2005.01448.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathwick, J. R., J. Elith, and T. Hastie, 2006: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Modell., 199, 188196, https://doi.org/10.1016/j.ecolmodel.2006.05.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leclerc, M., and T. B. M. J. Ouarda, 2007: Non-stationary regional flood frequency analysis at ungauged sites. J. Hydrol., 343, 254265, https://doi.org/10.1016/j.jhydrol.2007.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T.-S., and I.-F. Chen, 2005: A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl., 28, 743752, https://doi.org/10.1016/j.eswa.2004.12.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T.-S., C.-C. Chiu, Y.-C. Chou, and C.-J. Lu, 2006: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal., 50, 11131130, https://doi.org/10.1016/j.csda.2004.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leitte, P., C. Petrescu, U. Franck, M. Richter, O. Suciu, R. Ionovici, O. Herbarth, and U. Schlink, 2009: Respiratory health, effects of ambient air pollution and its modification by air humidity in Drobeta-Turnu Severin, Romania. Sci. Total Environ., 407, 40044011, https://doi.org/10.1016/j.scitotenv.2009.02.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. He, Y. Su, and L. Shu, 2016: Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines. Appl. Energy, 180, 392401, https://doi.org/10.1016/j.apenergy.2016.07.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masselink, R., A. J. A. M. Temme, R. Giménez, J. Casalí, and S. D. Keesstra, 2017: Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Geogr. Res. Lett., 43, 1939, https://doi.org/10.18172/cig.3169.

    • Search Google Scholar
    • Export Citation
  • Milborrow, S., 2018: Earth: Multivariate adaptive regression splines. R package, version 4.6.3, https://cran.r-project.org/web/packages/earth/index.html.

  • Muñoz, P., J. Orellana-Alvear, P. Willems, and R. Célleri, 2018: Flash-flood forecasting in an Andean mountain catchment—Development of a step-wise methodology based on the random forest algorithm. Water, 10, 1519, https://doi.org/10.3390/w10111519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niehoff, F., U. Fritsch, and A. Bronstert, 2002: Land-use impacts on storm-runoff generation: Scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol., 267, 8093, https://doi.org/10.1016/S0022-1694(02)00142-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Callaghan, J. F., and D. M. Mark, 1984: The extraction of drainage networks from digital elevation data. Comput. Vision Graphics Image Process., 28, 323344, https://doi.org/10.1016/S0734-189X(84)80011-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouali, D., F. Chebana, and T. B. M. J. Ouarda, 2016: Non-linear canonical correlation analysis in regional frequency analysis. Stochastic Environ. Res. Risk Assess., 30, 449462, https://doi.org/10.1007/s00477-015-1092-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouali, D., F. Chebana, and T. B. M. J. Ouarda, 2017: Fully nonlinear statistical and machine-learning approaches for hydrological frequency estimation at ungauged sites. J. Adv. Model. Earth Syst., 9, 12921306, https://doi.org/10.1002/2016MS000830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., 2016: Regional flood frequency modeling. Chow’s Handbook of Applied Hydrology, 3rd ed. V. P. Singh, Ed., McGraw-Hill, 77.71–77.78.

  • Ouarda, T. B. M. J., and C. Shu, 2009: Regional low-flow frequency analysis using single and ensemble artificial neural networks. Water Resour. Res., 45, W11428, https://doi.org/10.1029/2008wr007196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., M. Lang, B. Bobée, J. Bernier, and P. Bois, 1999: Synthèse de modèles régionaux d'estimation de crue utilisée en France et au Québec. Revue des sciences de l'eau/J. Water Sci., 12, 155182, https://doi.org/10.7202/705347ar.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., C. Girard, G. S. Cavadias, and B. Bobée, 2001: Regional flood frequency estimation with canonical correlation analysis. J. Hydrol., 254, 157173, https://doi.org/10.1016/S0022-1694(01)00488-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., C. Charron, P. R. Marpu, and F. Chebana, 2016: The generalized additive model for the assessment of the direct, diffuse, and global solar irradiances using SEVIRI images, with application to the UAE. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 15531566, https://doi.org/10.1109/JSTARS.2016.2522764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., C. Charrona, Y. Hundecha, A. St-Hilaire, and F. Chebana, 2018: Introduction of the GAM model for regional low-flow frequency analysis at ungauged basins and comparison with commonly used approaches. Environ. Modell. Software, 109, 256271, https://doi.org/10.1016/j.envsoft.2018.08.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pourghasemi, H. M., and N. Kerle, 2016: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ. Earth Sci., 75, 185, https://doi.org/10.1007/s12665-015-4950-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, A. M., L. R. Iverson, and A. Liaw, 2006: Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9, 181199, https://doi.org/10.1007/s10021-005-0054-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quenouille, M. H., 1949: Problems in plane sampling. Ann. Math. Stat., 20, 355375, https://doi.org/10.1214/aoms/1177729989.

  • Rahman, A., C. Charron, T. B. M. J. Ouarda, and F. Chebana, 2018: Development of regional flood frequency analysis techniques using generalized additive models for Australia. Stochastic Environ. Res. Risk Assess., 32, 123139, https://doi.org/10.1007/s00477-017-1384-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, T. O., R. T. Burnett, and D. Krewski, 2003: The effect of concurvity in generalized additive models linking mortality to ambient particulate matter. Epidemiology, 14, 1823, https://doi.org/10.1097/00001648-200301000-00009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rounaghi, M. M., M. R. Abbaszadeh, and M. Arashi, 2015: Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique. Physica, 438A, 625633, https://doi.org/10.1016/j.physa.2015.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roy, S. S., R. Roy, and V. E. Balas, 2018: Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renewable Sustainable Energy Rev., 82, 42564268, https://doi.org/10.1016/j.rser.2017.05.249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saadi, M., L. Oudin, and P. Ribstein, 2019: Random forest ability in regionalizing hourly hydrological model parameters. Water, 11, 1540, https://doi.org/10.3390/w11081540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, C., and D. H. Burn, 2004: Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res., 40, W09301, https://doi.org/10.1029/2003WR002816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, C., and T. B. M. J. Ouarda, 2007: Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour. Res., 43, W07438, https://doi.org/10.1029/2006WR005142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivakumar, B., 2007: Nonlinear determinism in river flow: Prediction as a possible indicator. Earth Surf. Processes Landforms, 32, 969979, https://doi.org/10.1002/esp.1462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., R. L. Bras, and I. Rodriguez-Iturbe, 1991: On the extraction of channel networks from digital elevation data. Hydrol. Processes, 5, 81100, https://doi.org/10.1002/hyp.3360050107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tasker, H., S. A. Hodge, and C. S. Barks, 1996: Region OF influence regression for estimating the 50-year flood at ungaged sites. J. Amer. Water Resour. Assoc., 32, 163170, https://doi.org/10.1111/j.1752-1688.1996.tb03444.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahba, G., 1990: Spline Models for Observational Data. SIAM, 181 pp.

    • Crossref
    • Export Citation
  • Wang, W., X. Chen, P. Shi, and P. H. A. J. M. van Gelder, 2008: Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China. Hydrol. Earth Syst. Sci., 12, 207221, https://doi.org/10.5194/hess-12-207-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., C. Lai, X. Chen, B. Yang, S. Zhao, and X. Bai, 2015: Flood hazard risk assessment model based on random forest. J. Hydrol., 527, 11301141, https://doi.org/10.1016/j.jhydrol.2015.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wazneh, H., F. Chebana, and T. B. M. J. Ouarda, 2013: Depth-based regional index-flood model. Water Resour. Res., 49, 79577972, https://doi.org/10.1002/2013WR013523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wazneh, H., F. Chebana, and T. B. M. J. Ouarda, 2013: Delineation of homogeneous regions for regional frequency analysis using statistical depth function. J. Hydrol., 521, 232244, https://doi.org/10.1016/j.jhydrol.2014.11.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wazneh, H., F. Chebana, and T. B. M. J. Ouarda, 2016: Identification of hydrological neighborhoods for regional flood frequency analysis using statistical depth function. Adv. Water Resour., 94, 251263, https://doi.org/10.1016/j.advwatres.2016.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, R., K. Rogers, N. Saintilan, and J. Ling, 2011: The influences of climate and hydrology on population dynamics of waterbirds in the lower Murrumbidgee River floodplains in Southeast Australia: Implications for environmental water management. Ecol. Modell., 222, 154163, https://doi.org/10.1016/j.ecolmodel.2010.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S. N., 2003: Thin plate regression splines. J. Roy. Stat. Soc., 65, 95114, https://doi.org/10.1111/1467-9868.00374.

  • Wood, S. N., 2004: Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Amer. Stat. Assoc., 99, 673686, https://doi.org/10.1198/016214504000000980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S. N., 2006: Generalized Additive Models: An Introduction with R. 1st ed. CRC Press, 410 pp.

  • Wood, S. N., 2017: Generalized Additive Models: An Introduction with R. 2nd ed. CRC Press, 476 pp.

  • Xu, J., W. Li, M. Ji, F. Lu, and S. Dong., 2010: A comprehensive approach to characterization of the nonlinearity of runoff in the headwaters of the Tarim River, western China. Hydrol. Processes J., 24, 136146, https://doi.org/10.1002/hyp.7484.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., A. T. C. Goh, Y. Zhang, Y. Chen, and Y. Xiao, 2015: Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines. Eng. Geol., 188, 2937, https://doi.org/10.1016/j.enggeo.2015.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and A. Goh, 2016: Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression. Geomech. Eng., 10, 269280, http://doi.org/10.12989/gae.2016.10.3.269.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 297 297 12
Full Text Views 131 131 24
PDF Downloads 110 110 18

Regional Frequency Analysis at Ungauged Sites with Multivariate Adaptive Regression Splines

View More View Less
  • 1 Canada Research Chair in Statistical Hydro-Climatology, INRS-ETE, Quebec, Quebec, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Hydrological systems are naturally complex and nonlinear. A large number of variables, many of which not yet well considered in regional frequency analysis (RFA), have a significant impact on hydrological dynamics and consequently on flood quantile estimates. Despite the increasing number of statistical tools used to estimate flood quantiles at ungauged sites, little attention has been dedicated to the development of new regional estimation (RE) models accounting for both nonlinear links and interactions between hydrological and physio-meteorological variables. The aim of this paper is to simultaneously take into account nonlinearity and interactions between variables by introducing the multivariate adaptive regression splines (MARS) approach in RFA. The predictive performances of MARS are compared with those obtained by one of the most robust RE models: the generalized additive model (GAM). Both approaches are applied to two datasets covering 151 hydrometric stations in the province of Quebec (Canada): a standard dataset (STA) containing commonly used variables and an extended dataset (EXTD) combining STA with additional variables dealing with drainage network characteristics. Results indicate that RE models using MARS with the EXTD outperform slightly RE models using GAM. Thus, MARS seems to allow for a better representation of the hydrological process and an increased predictive power in RFA.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amina Msilini, amina.msilini@ete.inrs.ca

Abstract

Hydrological systems are naturally complex and nonlinear. A large number of variables, many of which not yet well considered in regional frequency analysis (RFA), have a significant impact on hydrological dynamics and consequently on flood quantile estimates. Despite the increasing number of statistical tools used to estimate flood quantiles at ungauged sites, little attention has been dedicated to the development of new regional estimation (RE) models accounting for both nonlinear links and interactions between hydrological and physio-meteorological variables. The aim of this paper is to simultaneously take into account nonlinearity and interactions between variables by introducing the multivariate adaptive regression splines (MARS) approach in RFA. The predictive performances of MARS are compared with those obtained by one of the most robust RE models: the generalized additive model (GAM). Both approaches are applied to two datasets covering 151 hydrometric stations in the province of Quebec (Canada): a standard dataset (STA) containing commonly used variables and an extended dataset (EXTD) combining STA with additional variables dealing with drainage network characteristics. Results indicate that RE models using MARS with the EXTD outperform slightly RE models using GAM. Thus, MARS seems to allow for a better representation of the hydrological process and an increased predictive power in RFA.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amina Msilini, amina.msilini@ete.inrs.ca
Save