• Aadhar, S., and V. Mishra, 2017: High-resolution near real-time drought monitoring in South Asia. Sci. Data, 4, 170145, https://doi.org/10.1038/sdata.2017.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aadhar, S., and V. Mishra, 2019: A substantial rise in the area and population affected by dryness in South Asia under 1.5°C, 2.0°C and 2.5°C warmer worlds. Environ. Res. Lett., 14, 114021, https://doi.org/10.1088/1748-9326/ab4862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, R. A., S. V. Slade, and F. Eperjesi, 2000: An introduction to analysis of variance (ANOVA) with special reference to data from clinical experiments in optometry. Ophthalmic Physiol. Opt., 20, 235241, https://doi.org/10.1046/j.1475-1313.2000.00502.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., 2002: The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol., 265, 164177, https://doi.org/10.1016/S0022-1694(02)00101-4.

    • Search Google Scholar
    • Export Citation
  • Ashfaq, M., D. Rastogi, R. Mei, D. Touma, and L. R. Leung, 2017: Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Climate Dyn., 49, 193223, https://doi.org/10.1007/s00382-016-3337-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandyopadhyay, A., A. Bhadra, N. S. Raghuwanshi, and R. Singh, 2009: Temporal trends in estimates of reference evapotranspiration over India. J. Hydrol. Eng., 14, 508515, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, N., and M. Hulme, 1997: Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. For. Meteor., 87, 5573, https://doi.org/10.1016/S0168-1923(97)00006-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewes, C. F., I. Rangwala, J. J. Barsugli, M. T. Hobbins, and S. Kumar, 2017: Drought risk assessment under climate change is sensitive to methodological choices for the estimation of evaporative demand. PLoS One, 12, e0174045, https://doi.org/10.1371/journal.pone.0174045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, N., M. Alam, A. Sajjan, M. Bhuiyan, L. Ghose, Y. Ibaraki, and F. Karim, 2011: Assessing environmental and health impact of drought in the northwest Bangladesh. J. Environ. Sci. Nat. Resour., 4, 8997, https://doi.org/10.3329/jesnr.v4i2.10141.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos., 119, 78637875, https://doi.org/10.1002/2014JD021608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guhathakurta, P., and M. Rajeevan, 2008: Trends in the rainfall pattern over India. Int. J. Climatol., 28, 14531469, https://doi.org/10.1002/joc.1640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, V., and M. K. Jain, 2018: Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario. J. Hydrol., 567, 489509, https://doi.org/10.1016/j.jhydrol.2018.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, Z., and A. Aghakouchak, 2013: Multivariate standardized drought index: A parametric multi-index model. Adv. Water Resour., 57, 1218, https://doi.org/10.1016/j.advwatres.2013.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. H., and Z. A. Samani, 1985: Reference crop evapotranspiration from temperature. Appl. Eng. Agric., 1, 9699, https://doi.org/10.13031/2013.26773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaswal, A. K., G. S. P. Rao, and U. S. De, 2008: Spatial and temporal characteristics of evaporation trends over India during 1971-2000. Mausam, 59, 149.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 202 pp.

  • King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5°C and 2°C of global warming. Nat. Climate Change, 7, 412416, https://doi.org/10.1038/nclimate3296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. N., M. Rajeevan, D. S. Pai, A. K. Srivastava, and B. Preethi, 2013: On the observed variability of monsoon droughts over India. Wea. Climate Extreme, 1, 4250, https://doi.org/10.1016/j.wace.2013.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., J. L. Kinter, Z. Pan, and J. Sheffield, 2016: Twentieth century temperature trends in CMIP3, CMIP5, and CESM-LE climate simulations: Spatial-temporal uncertainties, differences, and their potential sources. J. Geophys. Res. Atmos., 121, 95619575, https://doi.org/10.1002/2015JD024382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., S. Coats, T. F. Stocker, A. G. Pendergrass, B. M. Sanderson, C. C. Raible, and J. E. Smerdon, 2017: Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett., 44, 74197428, https://doi.org/10.1002/2017GL074117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., F. Sun, W. Ho Lim, J. Zhang, H. Wang, H. Shiogama, and Y. Zhang, 2018: Global drought and severe drought-Affected populations in 1.5 and 2°C warmer worlds. Earth Syst. Dyn., 9, 267283, https://doi.org/10.5194/esd-9-267-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahto, S. S., and V. Mishra, 2019: Does ERA-5 outperform other reanalysis products for hydrologic applications in India? J. Geophys. Res. Atmos., 124, 94239441, https://doi.org/10.1029/2019JD031155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • McKenney, M. S., and N. J. Rosenberg, 1993: Sensitivity of some potential evapotranspiration estimation methods to climate change. Agric. For. Meteor., 64, 81110, https://doi.org/10.1016/0168-1923(93)90095-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, N., and D. Thomas, 1997: World Atlas of Desertification. 2nd ed. Arnold, 182 pp.

  • Milly, P. C. D., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, https://doi.org/10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., S., Aadhar, A. Asoka, S. Pai, and R. Kumar, 2016: On the frequency of the 2015 monsoon season drought in the Indo-Gangetic Plain. Geophys. Res. Lett., 43, 12 10212 112, https://doi.org/10.1002/2016GL071407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, https://doi.org/10.1073/pnas.1119150109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., R. Kumar, H. L. Shah, L. Samaniego, S. Eisner, and T. Yang, 2017: Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change. Climatic Change, 141, 451465, https://doi.org/10.1007/s10584-016-1886-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., R. Shah, S. Azhar, H. Shah, P. Modi, and R. Kumar, 2018: Reconstruction of droughts in India using multiple land-surface models (1951–2015). Hydrol. Earth Syst. Sci., 22, 22692284, https://doi.org/10.5194/hess-22-2269-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205234.

  • Novick, K. A., and Coauthors, 2016: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Climate Change, 6, 10231027, https://doi.org/10.1038/nclimate3114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193, 120145, https://doi.org/10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Ponce, V. M., R. P. Pandey, and S. Ercan, 2000: Characterization of drought across climatic spectrum. J. Hydrol. Eng., 5, 222224, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(222).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and Coauthors, 2014: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA, 111, 32623267, https://doi.org/10.1073/pnas.1222473110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., A. Zimmer, D. M. W. Frierson, R. Startz, and P. Liu, 2017: Less than 2°C warming by 2100 unlikely. Nat. Climate Change, 7, 637641, https://doi.org/10.1038/nclimate3352.

    • Search Google Scholar
    • Export Citation
  • Ramarao, M. V. S., J. Sanjay, R. Krishnan, M. Mujumdar, A. Bazaz, and A. Revi, 2019: On observed aridity changes over the semiarid regions of India in a warming climate. Theor. Appl. Climatol., 136, 693702, https://doi.org/10.1007/s00704-018-2513-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, J. D., R. W. Gesch, T. R. Sinclair, and L. Hartwell Allen, 2002: The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant Soil, 239, 113121, https://doi.org/10.1023/A:1014947422468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhee, J., and J. Cho, 2016: Future changes in drought characteristics: Regional analysis for South Korea under CMIP5 projections. J. Hydrometeor., 17, 437451, https://doi.org/10.1175/JHM-D-15-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., P. Greve, and G. D. Farquhar, 2015: On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res., 51, 54505463, https://doi.org/10.1002/2015WR017031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. N. Goswami, 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safriel, U., and Coauthors, 2005: Dryland systems. Current State and Trends, Vol. 1, Ecosystems and Human Well-Being, R. Hassan et al., Eds., Millennium Ecosystem Assessment Series, World Resources Institute, 623–662.

  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, https://doi.org/10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s Tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, D., M. Tsiang, B. Rajaratnam, and N. S. Di, 2014: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Climate Change, 4, 456461, https://doi.org/10.1038/nclimate2208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, A., G. Kathayat, H. Cheng, S. F. M. Breitenbach, M. Berkelhammer, M. Mudelsee, J. Biswas, and R. L. Edwards, 2015: Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat. Commun., 6, 6309, https://doi.org/10.1038/ncomms7309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, https://doi.org/10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 55, https://doi.org/10.2307/210739.

  • Touma, D., M. Ashfaq, M. A. Nayak, S. C. Kao, and N. S. Diffenbaugh, 2015: A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol., 526, 196207, https://doi.org/10.1016/j.jhydrol.2014.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valiantzas, J. D., 2018: Modification of the Hargreaves-Samani model for estimating solar radiation from temperature and humidity data. J. Irrig. Drain. Eng., 144, 06017014, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., T. Das, D. P. Lettenmaier, J. A. Vano, T. Das, and D. P. Lettenmaier, 2012: Hydrologic sensitivities of Colorado river runoff to changes in precipitation and temperature. J. Hydrometeor., 13, 932949, https://doi.org/10.1175/JHM-D-11-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., J. Cattiaux, P. Yiou, J. N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, https://doi.org/10.1038/ngeo979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetter, T., S. Huang, V. Aich, T. Yang, X. Wang, V. Krysanova, and F. Hattermann, 2015: Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst. Dyn., 6, 1743, https://doi.org/10.5194/esd-6-17-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, https://doi.org/10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. L. Roderick, S. Zhang, T. R. McVicar, and R. J. Donohue, 2019: Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Climate Change, 9, 4448, https://doi.org/10.1038/s41558-018-0361-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, S., and S. M. Quiring, 2014: Drought in the U.S. Great Plains (1980–2012): A sensitivity study using different methods for estimating potential evapotranspiration in the Palmer drought severity index. J. Geophys. Res. Atmos., 119, 10 99611 010, https://doi.org/10.1002/2014JD021970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, S., and C. Y. Wang, 2002: Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res., 38, 1068, https://doi.org/10.1029/2001WR000861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J. Climate, 28, 44904512, https://doi.org/10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 251 251 65
Full Text Views 75 75 20
PDF Downloads 86 86 23

Increased Drought Risk in South Asia under Warming Climate: Implications of Uncertainty in Potential Evapotranspiration Estimates

View More View Less
  • 1 Civil Engineering, Indian Institute of Technology, Gandhinagar, India
© Get Permissions
Restricted access

Abstract

Observed and projected changes in potential evapotranspiration (PET) and drought are not well constrained in South Asia. Using five PET estimates [Thornthwaite (PET-TH), Hargreaves–Samani (PET-HS), Penman–Monteith (PET-PM), modified Penman–Monteith (PET-MPM), and energy (PET-EN)] for the observed (1979–2018, from ERA5) and future warming climate, we show that significant warming has occurred in South Asia during 1979–2018. PET changes show considerable uncertainty depending on the method used. For instance, PET-TH has increased significantly while all the other four methods show a decline in PET in the majority of South Asia during the observed period of 1979–2018. The increase in PET-TH is substantially higher than PET-HS, PET-PM, and PET-MPM due to a higher (3–4 times) sensitivity of PET-TH to warming during the observed period. Under the 1.5°, 2.0°, and 2.5°C warming worlds, global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5 GCMs) project increases in PET and drought frequency over the majority of the regions. Drought estimates based on PET-EN and PET-MPM are consistent with soil moisture–based drought estimates and project a substantial increase in the frequency of severe droughts under warming climate in South Asia. In addition, the projected frequency of severe drought based on PET-TH, which is an outlier, is about 5 times higher than PET-EN and PET-MPM. Methods to estimate PET contribute the most in the overall uncertainty of PET and drought projections in South Asia, primarily due to PET-TH. Drought estimates based on PET-TH are not reliable for the observed and projected future climate. Therefore, future drought projections should be either based on PET-EN/PET-MPM or soil moisture.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-19-0224.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vimal Mishra, vmishra@iitgn.ac.in

Abstract

Observed and projected changes in potential evapotranspiration (PET) and drought are not well constrained in South Asia. Using five PET estimates [Thornthwaite (PET-TH), Hargreaves–Samani (PET-HS), Penman–Monteith (PET-PM), modified Penman–Monteith (PET-MPM), and energy (PET-EN)] for the observed (1979–2018, from ERA5) and future warming climate, we show that significant warming has occurred in South Asia during 1979–2018. PET changes show considerable uncertainty depending on the method used. For instance, PET-TH has increased significantly while all the other four methods show a decline in PET in the majority of South Asia during the observed period of 1979–2018. The increase in PET-TH is substantially higher than PET-HS, PET-PM, and PET-MPM due to a higher (3–4 times) sensitivity of PET-TH to warming during the observed period. Under the 1.5°, 2.0°, and 2.5°C warming worlds, global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5 GCMs) project increases in PET and drought frequency over the majority of the regions. Drought estimates based on PET-EN and PET-MPM are consistent with soil moisture–based drought estimates and project a substantial increase in the frequency of severe droughts under warming climate in South Asia. In addition, the projected frequency of severe drought based on PET-TH, which is an outlier, is about 5 times higher than PET-EN and PET-MPM. Methods to estimate PET contribute the most in the overall uncertainty of PET and drought projections in South Asia, primarily due to PET-TH. Drought estimates based on PET-TH are not reliable for the observed and projected future climate. Therefore, future drought projections should be either based on PET-EN/PET-MPM or soil moisture.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-19-0224.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vimal Mishra, vmishra@iitgn.ac.in

Supplementary Materials

    • Supplemental Materials (PDF 4.29 MB)
Save