Object-Based Comparison of Data-Driven and Physics-Driven Satellite Estimates of Extreme Rainfall

Zhe Li Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Zhe Li in
Current site
Google Scholar
PubMed
Close
,
Daniel B. Wright Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Daniel B. Wright in
Current site
Google Scholar
PubMed
Close
,
Sara Q. Zhang NASA Goddard Space Flight Center, Greenbelt, Maryland
Science Applications International Corporation, McLean, Virginia

Search for other papers by Sara Q. Zhang in
Current site
Google Scholar
PubMed
Close
,
Dalia B. Kirschbaum NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dalia B. Kirschbaum in
Current site
Google Scholar
PubMed
Close
, and
Samantha H. Hartke Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Samantha H. Hartke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhe Li, zli875@wisc.edu

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Abstract

The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhe Li, zli875@wisc.edu

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Save
  • AghaKouchak, A., N. Nasrollahi, J. Li, B. Imam, and S. Sorooshian, 2011: Geometrical characterization of precipitation patterns. J. Hydrometeor., 12, 274285, https://doi.org/10.1175/2010JHM1298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amidror, I., 2002: Scattered data interpolation methods for electronic imaging systems: A survey. J. Electron. Imaging, 11, 157, https://doi.org/10.1117/1.1455013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and M. Arulraj, 2020: Remote sensing of orographic precipitation. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 69, Springer International Publishing, 559582.

    • Crossref
    • Export Citation
  • Barros, A. P., and Coauthors, 2014: NASA GPM—Ground validation: Integrated precipitation and hydrology experiment 2014 science plan. NASA Tech. Rep., 64 pp., https://doi.org/10.7924/G8CC0XMR.

    • Crossref
    • Export Citation
  • Beck, H. E., and Coauthors, 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Chambon, P., S. Q. Zhang, A. Y. Hou, M. Zupanski, and S. Cheung, 2014: Assessing the impact of pre-GPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 12191235, https://doi.org/10.1002/qj.2215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W., M. L. Stein, J. Wang, V. R. Kotamarthi, and E. J. Moyer, 2016: Changes in spatiotemporal precipitation patterns in changing climate conditions. J. Climate, 29, 83558376, https://doi.org/10.1175/JCLI-D-15-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demaria, E. M. C., D. A. Rodriguez, E. E. Ebert, P. Salio, F. Su, and J. B. Valdes, 2011: Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach. J. Geophys. Res., 116, D08103, https://doi.org/10.1029/2010JD015157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorninger, M., E. Gilleland, B. Casati, M. P. Mittermaier, E. E. Ebert, B. G. Brown, and L. J. Wilson, 2018: The setup of the MesoVICT project. Bull. Amer. Meteor. Soc., 99, 18871906, https://doi.org/10.1175/BAMS-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202, https://doi.org/10.1016/S0022-1694(00)00343-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erlingis, J. M., J. J. Gourley, P.-E. Kirstetter, E. N. Anagnostou, J. Kalogiros, M. N. Anagnostou, and W. Petersen, 2018: Evaluation of operational and experimental precipitation algorithms and microphysical insights during IPHEx. J. Hydrometeor., 19, 113125, https://doi.org/10.1175/JHM-D-17-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., 2013: Two-dimensional kernel smoothing: Using the R package smoothie. NCAR Tech. Note NCAR/TN-502+STR, 24 pp., http://doi.org/10.5065/D61834G2.

    • Crossref
    • Export Citation
  • Gilleland, E., 2019: SpatialVx: Spatial forecast verification, version 0.7. R package, https://cran.r-project.org/package=SpatialVx.

  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, https://doi.org/10.1175/2009WAF2222269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. A. Ahijevych, B. G. Brown, and E. E. Ebert, 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 13651376, https://doi.org/10.1175/2010BAMS2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilloteau, C., E. Foufoula-Georgiou, and C. D. Kummerow, 2017: Global multiscale evaluation of satellite passive microwave retrieval of precipitation during the TRMM and GPM eras: Effective resolution and regional diagnostics for future algorithm development. J. Hydrometeor., 18, 30513070, https://doi.org/10.1175/JHM-D-17-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Series 27, 63 pp., https://doi.org/10.21957/tkic6g3wm.

    • Crossref
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2018: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 5.2, 35 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf.

  • Huffman, G. J., and Coauthors, 2019: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 6, 34 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

  • Joyce, R., J. Janowiak, and G. Huffman, 2001: Latitudinally and seasonally dependent zenith-angle corrections for geostationary satellite IR brightness temperatures. J. Appl. Meteor., 40, 689703, https://doi.org/10.1175/1520-0450(2001)040<0689:LASDZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., and Coauthors, 2017: NASA’s remotely sensed precipitation: A reservoir for applications users. Bull. Amer. Meteor. Soc., 98, 11691184, https://doi.org/10.1175/BAMS-D-15-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. McCollum, R. Ferraro, and G. Petty, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., D. E. Waliser, R. Ferraro, T. Iguchi, C. D. Peters-Lidard, B. Tian, P. C. Loikith, and D. B. Wright, 2017: Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF. J. Geophys. Res. Atmos., 122, 73717384, https://doi.org/10.1002/2017JD026564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., D. Alsdorf, J. Dozier, G. J. Huffman, M. Pan, and E. F. Wood, 2015: Inroads of remote sensing into hydrologic science during the WRR era. Water Resour. Res., 51, 73097342, https://doi.org/10.1002/2015WR017616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., K.-L. Hsu, A. AghaKouchak, and S. Sorooshian, 2016: Object-based assessment of satellite precipitation products. Remote Sens., 8, 547, https://doi.org/10.3390/rs8070547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., D. Yang, Y. Hong, J. Zhang, and Y. Qi, 2014: Characterizing spatiotemporal variations of hourly rainfall by gauge and radar in the mountainous three gorges region. J. Appl. Meteor. Climatol., 53, 873889, https://doi.org/10.1175/JAMC-D-13-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., 2011: GCIP/EOP surface: Precipitation NCEP/EMC 4KM gridded data (GRIB) stage IV data. Version 1.0, UCAR/NCAR EOL, accessed 1 October 2018, https://doi.org/10.5065/d6pg1qdd.

    • Crossref
    • Export Citation
  • Lundquist, J., M. Hughes, E. Gutmann, and S. Kapnick, 2019: Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Amer. Meteor. Soc., 100, 24732490, https://doi.org/10.1175/BAMS-D-19-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., P. C. Meyers, and M. D. Robinson, 2016a: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeor., 17, 11011117, https://doi.org/10.1175/JHM-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., M. R. P. Sapiano, and R. F. Adler, 2016b: Estimating uncertainties in high-resolution satellite precipitation products: Systematic or random error? J. Hydrometeor., 17, 11191129, https://doi.org/10.1175/JHM-D-15-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and Coauthors, 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2014: Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling. J. Geophys. Res. Atmos., 119, 84508475, https://doi.org/10.1002/2013JD021424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718741, https://doi.org/10.1175/MWR-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., D. C. Goodrich, R. A. Maddox, X. Gao, H. V. Gupta, and S. Sorooshian, 2006: Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Adv. Water Resour., 29, 843860, https://doi.org/10.1016/j.advwatres.2005.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371394, https://doi.org/10.1175/WAF-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., N. S. Bartsotas, E. N. Anagnostou, and G. Kallos, 2015: Using high-resolution numerical weather Forecasts to improve remotely sensed rainfall estimates: The case of the 2013 Colorado flash flood. J. Hydrometeor., 16, 17421751, https://doi.org/10.1175/JHM-D-14-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC’s land information system. Innovation Syst. Software Eng., 3, 157165, https://doi.org/10.1007/s11334-007-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ. Modell. Software, 67, 149159, https://doi.org/10.1016/j.envsoft.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci., 19, 20372056, https://doi.org/10.5194/hess-19-2037-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossa, A., P. Nurmi, and E. Ebert, 2008: Overview of methods for the verification of quantitative precipitation forecasts. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 419–452.

    • Crossref
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting., 21, 6985, https://doi.org/10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, and A. Tokay, 2016: A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor., 17, 24772491, https://doi.org/10.1175/JHM-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, G. Kirchengast, D. C. Goodrich, and D. B. Wolff, 2018: Evaluation of global precipitation measurement rainfall estimates against three dense gauge networks. J. Hydrometeor., 19, 517532, https://doi.org/10.1175/JHM-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., Y. Ma, D. Long, L. Zhong, and Y. Hong, 2016: Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152167, https://doi.org/10.1016/j.jhydrol.2015.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2014: The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmos. Res., 143, 392424, https://doi.org/10.1016/j.atmosres.2014.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, https://doi.org/10.1029/2009JD011949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., G. J. Huffman, R. F. Adler, L. Tang, M. Sapiano, V. Maggioni, and H. Wu, 2013: Modeling errors in daily precipitation measurements: Additive or multiplicative?. Geophys. Res. Lett., 40, 20602065, https://doi.org/10.1002/grl.50320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463482, https://doi.org/10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 2011: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. B., 2018: Rainfall information for global flood modeling. Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting, Geophys. Monogr., Vol. 233, Amer. Geophys. Union, 1742, https://doi.org/10.1002/9781119217886.ch2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. B., D. B. Kirschbaum, and S. Yatheendradas, 2017: Satellite precipitation characterization, error modeling, and error correction using censored shifted gamma distributions. J. Hydrometeor., 18, 28012815, https://doi.org/10.1175/JHM-D-17-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L.-F. Lin, and R. L. Bras, 2018: Evaluation of the quality of precipitation products: A case study using WRF and IMERG data over the central United States. J. Hydrometeor., 19, 20072020, https://doi.org/10.1175/JHM-D-18-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. Q., M. Zupanski, A. Y. Hou, X. Lin, and S. H. Cheung, 2013: Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system. Mon. Wea. Rev., 141, 754772, https://doi.org/10.1175/MWR-D-12-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. Q., T. Matsui, S. Cheung, M. Zupanski, and C. Peters-Lidard, 2017: Impact of assimilated precipitation-sensitive radiances on the NU-WRF simulation of the West African monsoon. Mon. Wea. Rev., 145, 38813900, https://doi.org/10.1175/MWR-D-16-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., E. N. Anagnostou, M. Frediani, S. Solomos, and G. Kallos, 2013: Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas. J. Hydrometeor., 14, 18441858, https://doi.org/10.1175/JHM-D-12-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., E. N. Anagnostou, and H. Vergara, 2016: Hydrologic evaluation of NWP-adjusted CMORPH estimates of hurricane-induced precipitation in the southern Appalachians. J. Hydrometeor., 17, 10871099, https://doi.org/10.1175/JHM-D-15-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., E. Anagnostou, and C. Schwartz, 2018: NWP-based adjustment of IMERG precipitation for flood-inducing complex terrain storms: Evaluation over CONUS. Remote Sens., 10, 642, https://doi.org/10.3390/rs10040642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, D., S. Q. Zhang, M. Zupanski, A. Y. Hou, and S. H. Cheung, 2011: A prototype WRF-based ensemble data assimilation system for dynamically downscaling satellite precipitation observations. J. Hydrometeor., 12, 118134, https://doi.org/10.1175/2010JHM1271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 496 0 0
Full Text Views 4541 3589 1075
PDF Downloads 779 144 19