• Allen, J. T., M. J. Molina, and V. A. Gensini, 2018: Modulation of annual cycle of tornadoes by El Niño–Southern Oscillation. Geophys. Res. Lett., 45, 57085717, https://doi.org/10.1029/2018GL077482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and J. E. Janowiak, 1995: Atmospheric circulation associated with the midwest floods of 1993. Bull. Amer. Meteor. Soc., 76, 681696, https://doi.org/10.1175/1520-0477(1995)076<0681:ACAWTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berens, P., 2009: CircStat: A MATLAB toolbox for circular statistics. J. Stat. Software, 31 (10), 121, https://doi.org/10.18637/jss.v031.i10.

  • Bhatia, N., V. P. Singh, and K. Lee, 2019: Variability of extreme precipitation over Texas and its relation with climatic cycles. Theor. Appl. Climatol., 138, 449467, https://doi.org/10.1007/s00704-019-02840-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, N., A. Rheinwalt, B. Bookhagen, H. M. J. Barbosa, N. Marwan, J. Marengo, and J. Kurths, 2014: The South American rainfall dipole: A complex network analysis of extreme events. Geophys. Res. Lett., 41, 73977405, https://doi.org/10.1002/2014GL061829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, V. M., B. D. Keim, and A. W. Black, 2020: Trend analysis of multiple extreme hourly precipitation time series in the southeastern United States. J. Appl. Meteor. Climatol., 59, 427442, https://doi.org/10.1175/JAMC-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M., 2020: Assessing precipitation trends in the Americas with historical data: A review. Wiley Interdiscip. Rev.: Climate Change, 11, e627, https://doi.org/10.1002/wcc.627.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chin, E. H., 1977: Modeling daily precipitation occurrence process with Markov chain. Water Resour. Res., 13, 949956, https://doi.org/10.1029/WR013i006p00949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cover, T. M., and J. A. Thomas, 2006: Elements of Information Theory. 2nd ed. Wiley, 792 pp.

  • Dickinson, J. E., T. M. Harden, and G. J. McCabe, 2019: Seasonality of climatic drivers of flood variability in the conterminous United States. Sci. Rep., 9, 15321, https://doi.org/10.1038/s41598-019-51722-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, and E. R. Vivoni, 2008: Precipitation recycling variability and ecoclimatological stability––A study using NARR data. Part II: North American Monsoon region. J. Climate, 21, 51875203, https://doi.org/10.1175/2008JCLI1760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ensor, L. A., and S. M. Robeson, 2008: Statistical characteristics of daily precipitation: Comparisons of gridded and point datasets. J. Appl. Meteor. Climatol., 47, 24682476, https://doi.org/10.1175/2008JAMC1757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandes, R., and S. G. Leblanc, 2005: Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ., 95, 303316, https://doi.org/10.1016/j.rse.2005.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabriel, K., and J. Neumann, 1961: A Markov chain model for daily rainfall occurrence at Tel Aviv. Quart. J. Roy. Meteor. Soc., 88, 9095, https://doi.org/10.1002/qj.49708837511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., and Z. Fang, 2018: Using storm transposition to investigate the relationships between hydrologic responses and spatial moments of catchment rainfall. Nat. Hazards Rev., 19, 04018015, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate, 11, 15751586, https://doi.org/10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodwell, A. E., and P. Kumar, 2015: Information theoretic measures to infer feedback dynamics in coupled logistic networks. Entropy (Basel), 17, 74687492, https://doi.org/10.3390/e17117468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodwell, A. E., and P. Kumar, 2017: Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables. Water Resour. Res., 53, 59205942, https://doi.org/10.1002/2016WR020216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodwell, A. E., and P. Kumar, 2019: A changing climatology of precipitation persistence across the United States using information-based measures. J. Hydrometeor., 20, 16491666, https://doi.org/10.1175/JHM-D-19-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallet, T. B., T. Coulson, J. G. Pilkington, T. H. Clulton-Brock, J. M. Pemberion, and B. T. Grenfell, 2004: Why large-scale climate indices seem to predict ecological processes better than local weather. Nature, 430, 7175, https://doi.org/10.1038/NATURE02708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L. E., G. J. McCabe, D. M. Wolock, and M. A. Ayers, 1991: Simulation of precipitation by weather type analysis. Water Resour. Res., 27, 493501, https://doi.org/10.1029/90WR02650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2010: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79, 231244, https://doi.org/10.1016/j.jmarsys.2009.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., S.-K. Lee, H. Lopez, G. R. Foltz, V. Misra, and A. Kumar, 2020: On the role of Pacific-Atlantic SST contrast and associated Caribbean Sea convection in August-October US regional rainfall variability. Geophys. Res. Lett., 47, e2020GL087736, https://doi.org/10.1029/2020GL087736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D. H., and Y. Seo, 2013: Hydrodynamic analysis of storm movement effects on runoff hydrographs and loop-rating curves of a V-shaped watershed. Water Resour. Res., 49, 66136623, https://doi.org/10.1002/wrcr.20535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D., B. Yarnal, and M. Palecki, 1991: The Pacific/North American teleconnection pattern and United Sates climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, K., and J. Huang, 2007: Effect of moving rainstorms on attainment of equilibrium discharge. Hydrol. Processes, 21, 33573366, https://doi.org/10.1002/hyp.6548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Litzow, M. A., and Coauthors, 2020: The changing physical and ecological meanings of North Pacific Ocean climate indices. Proc. Natl. Acad. Sci. USA, 117, 76657671, https://doi.org/10.1073/pnas.1921266117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., C. Wang, S.-K. Lee, and D. Enfield, 2015: Inhomogeneous influence of the Atlantic warm pool on United States precipitation. Atmos. Sci. Lett., 16, 6369, https://doi.org/10.1002/asl2.521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, S. W., 1990: Spatial and temporal variability of monthly precipitation in Texas. Mon. Wea. Rev., 118, 26342648, https://doi.org/10.1175/1520-0493(1990)118<2634:SATVOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., W. Waegeman, W. A. Dorigo, N. E. C. Verhoest, and D. G. Miralles, 2018: Terrestrial evaporation response to modes of climate variability. npj Climate Atmos. Sci., 1, 43, https://doi.org/10.1038/s41612-018-0053-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMahon, G., S. Gregonis, S. Waltman, J. Omernik, T. Thorson, J. Freeouf, A. Rorick, and J. Keys, 2001: Developing a spatial framework of common ecological regions for the conterminous United States. Environ. Manage., 28, 293316, https://doi.org/10.1007/s0026702429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2019a: Atlantic Multidecadal Oscillation. NOAA Physical Sciences Laboratory, accessed 1 May 2019, https://www.esrl.noaa.gov/psd/data/timeseries/AMO/.

  • NOAA, 2019b: East Pacific/North Pacific Oscillation. NOAA Climate Prediction Center, accessed 1 May 2019, https://www.cpc.ncep.noaa.gov/data/teledoc/ep.shtml.

  • NOAA, 2019c: North Pacific Pattern. NOAA Physical Sciences Laboratory, accessed 1 May 2019, https://www.esrl.noaa.gov/psd/data/climateindices/list/.

  • NOAA, 2019d: Pacific Decadal Oscillation. NOAA Physical Sciences Laboratory, accessed 1 May 2019, http://research.jisao.washington.edu/pdo/PDO.latest.

  • Roque-Malo, S., and P. Kumar, 2017: Patterns of change in high frequency precipitation variability over North America. Sci. Rep., 7, 10853, https://doi.org/10.1038/s41598-017-10827-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddell, B. L., and P. Kumar, 2009: Ecohydrologic process networks: 1. Identification. Water Resour. Res., 45, W03419, https://doi.org/10.1029/2008WR007279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeghi, S., G. Tootle, E. Elliott, V. Lakshmi, M. Therrell, J. Kam, and B. Bearden, 2019: Atlantic Ocean sea surface temperatures and southeast United States streamflow variability: Associations with the recent multi-decadal decline. J. Hydrol., 576, 422429, https://doi.org/10.1016/j.jhydrol.2019.06.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiber, T., 2000: Measuring information transfer. Phys. Rev. Lett., 85, 461, https://doi.org/10.1103/PhysRevLett.85.461.

  • Seaber, P. R., K. F. Paul, and G. L. Knapp, 1987: Hydrologic unit maps. USGS Water-Supply Paper 2294, 66 pp., http://pubs.usgs.gov/wsp/wsp2294/pdf/wsp_2294.pdf.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s Tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.2307/2285891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sendrowski, A., and P. Passalacqua, 2017: Process connectivity in a naturally prograding river delta. Water Resour. Res., 53, 18411863, https://doi.org/10.1002/2016WR019768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, Y., and A. R. Schmidt, 2013: Network configuration and hydrograph sensitivity to storm kinematics. Water Resour. Res., 49, 18121827, https://doi.org/10.1002/wrcr.20115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, Y., and A. R. Schmidt, 2014: Evaluation of drainage networks under moving storms utilizing the equivalent stationary storms. Nat. Hazards, 70, 803819, https://doi.org/10.1007/s11069-013-0845-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, Y., A. R. Schmidt, and M. Sivapalan, 2012: Effect of storm movement on flood peaks: Analysis framework based on characteristic timescales. Water Resour. Res., 48, W05532, https://doi.org/10.1029/2011WR011761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shannon, C. E., 1948: A mathematical theory of communication. Bell Syst. Tech. J., 27, 623656, https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, V. P., 1997: Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph. Hydrol. Processes, 11, 16491669, https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1649::AID-HYP495>3.0.CO;2-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K.-s. Chan, N. G. Yoccoz, and A. Bjørn, 2003: Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc. Roy. Soc., 270B, 20872096, https://doi.org/10.1098/rspb.2003.2415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., andH. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, https://doi.org/10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and C. Guillemot, 1995: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, https://doi.org/10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volpi, E., M. Di Lazzaro, and A. Fiori, 2013: Analytical modeling of the hydrologic response under moving rainstorms: Storm-catchment interaction and resonance. J. Hydrol., 493, 132139, https://doi.org/10.1016/j.jhydrol.2013.04.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. L., and R. D. Beer, 2010: Nonnegative decomposition of multivariate information. arXiv, https://arxiv.org/abs/1004.2515.

  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., S. Piao, Y. Xu, A. Bastos, P. Ciais, and S. Peng, 2017: The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophys. Res. Lett., 44, 32093218, https://doi.org/10.1002/2016GL071743.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 310 251 18
Full Text Views 67 56 0
PDF Downloads 93 76 0

“It’s Raining Bits”: Patterns in Directional Precipitation Persistence across the United States

View More View Less
  • 1 Civil Engineering, University of Colorado Denver, Denver, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The spatial and temporal ordering of precipitation occurrence impacts ecosystems, streamflow, and water availability. For example, both large-scale climate patterns and local landscapes drive weather events, and the typical speeds and directions of these events moving across a basin dictate the timing of flows at its outlet. We address the predictability of precipitation occurrence at a given location, based on the knowledge of past precipitation at surrounding locations. We identify “dominant directions of precipitation influence” across the continental United States based on a gridded daily dataset. Specifically, we apply information theory–based measures that characterize dominant directions and strengths of spatial and temporal precipitation dependencies. On a national average, this dominant direction agrees with the prevalent direction of weather movement from west to east across the country, but regional differences reflect topographic divides, precipitation gradients, and different climatic drivers of precipitation. Trends in these information relationships and their correlations with climate indices over the past 70 years also show seasonal and spatial divides. This study expands upon a framework of information-based predictability to answer questions about spatial connectivity in addition to temporal persistence. The methods presented here are generally useful to understand many aspects of weather and climate variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0134.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Corresponding author: Allison E. Goodwell, allison.goodwell@ucdenver.edu

Abstract

The spatial and temporal ordering of precipitation occurrence impacts ecosystems, streamflow, and water availability. For example, both large-scale climate patterns and local landscapes drive weather events, and the typical speeds and directions of these events moving across a basin dictate the timing of flows at its outlet. We address the predictability of precipitation occurrence at a given location, based on the knowledge of past precipitation at surrounding locations. We identify “dominant directions of precipitation influence” across the continental United States based on a gridded daily dataset. Specifically, we apply information theory–based measures that characterize dominant directions and strengths of spatial and temporal precipitation dependencies. On a national average, this dominant direction agrees with the prevalent direction of weather movement from west to east across the country, but regional differences reflect topographic divides, precipitation gradients, and different climatic drivers of precipitation. Trends in these information relationships and their correlations with climate indices over the past 70 years also show seasonal and spatial divides. This study expands upon a framework of information-based predictability to answer questions about spatial connectivity in addition to temporal persistence. The methods presented here are generally useful to understand many aspects of weather and climate variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0134.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Corresponding author: Allison E. Goodwell, allison.goodwell@ucdenver.edu

Supplementary Materials

    • Supplemental Materials (PDF 437 KB)
Save