• Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, https://doi.org/10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., and M. Sapiano, 2013: Corrections and APC for SSMIS. Colorado State University Tech. Rep., 30 pp., http://rain.atmos.colostate.edu/FCDR/doc/CSU_FCDR_ssmis_corrections_tech_report.pdf.

  • Berg, W., and Coauthors, 2016: Intercalibration of the GPM microwave radiometer constellation. J. Atmos. Oceanic Technol., 33, 26392654, https://doi.org/10.1175/JTECH-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, S., and V. Chandrasekar, 2018: Cross-validation of observations between the GPM dual-frequency precipitation radar and ground based dual-polarization radars. Remote Sens., 10, 1773, https://doi.org/10.3390/rs10111773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conner, M. D., and G. W. Petty, 1998: Validation and intercomparison of SSM/I rain-rate retrieval methods over the continental United States. J. Appl. Meteor., 37, 679700, https://doi.org/10.1175/1520-0450(1998)037<0679:VAIOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., P.-E. Kirstetter, Y. E. Hong, J. J. Gourley, G. J. Huffman, W. A. Petersen, X. Xue, and M. R. Schwaller, 2018: To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT? J. Geophys. Res. Atmos., 123, 16941707, https://doi.org/10.1002/2017JD027606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M., 2018: The Joint Polar Satellite System Overview. IGARSS 2018-2018 IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, Institute of Electrical and Electronics Engineers, 1581–1584, https://doi.org/10.1109/IGARSS.2018.8518787.

    • Crossref
    • Export Citation
  • Gu, X., and X. Tong, 2015: Overview of China eArth observation satellite programs [Space Agencies]. IEEE Geosci. Remote Sens. Mag., 3, 113129, https://doi.org/10.1109/MGRS.2015.2467172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341853, https://doi.org/10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation Estimation from remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Khan, S., V. Maggioni, and P.-E. Kirstetter, 2018: Investigating the potential of using satellite-based precipitation radars as reference for evaluating multisatellite merged products. J. Geophys. Res. Atmos., 123, 86468660, https://doi.org/10.1029/2018JD028584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., 2018: NASA Global Precipitation Measurement (GPM) Precipitation Retrieval and Profiling Scheme (PRPS). Algorithm Theoretical Basis Doc., version 01-02, 16 pp., https://pps.gsfc.nasa.gov/Documents/20180203_SAPHIR-ATBD.pdf.

  • Kidd, C., J. Tan, P.-E. Kirstetter, and W. A. Petersen, 2018: Validation of the Version 05 Level 2 precipitation products from the GPM Core Observatory and constellation satellite sensors. Quart. J. Roy. Meteor. Soc., 144, 313328, https://doi.org/10.1002/qj.3175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 13, 12851300, https://doi.org/10.1175/JHM-D-11-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, Q. Cao, M. Schwaller, and W. Petersen, 2014: Research framework to bridge from the Global Precipitation Measurement Mission core satellite to the constellation sensors using ground-radar-based national mosaic QPE. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 61–79.

    • Crossref
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. Gourley, M. Schwaller, W. Petersen, and Q. Cao, 2015: Impact of sub-pixel rainfall variability on spaceborne precipitation estimation: Evaluating the TRMM 2A25 product. Quart. J. Roy. Meteor. Soc., 141, 953966, https://doi.org/10.1002/qj.2416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, https://doi.org/10.1175/2010JTECHA1468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., and A. Y. Hou, 2008: Evaluation of coincident passive microwave rainfall estimates using TRMM PR and ground measurements as references. J. Appl. Meteor. Climatol., 47, 31703187, https://doi.org/10.1175/2008JAMC1893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., P. Chang, J. Kurian, R. Saravanan, and X. Lin, 2018: Satellite-observed precipitation response to ocean mesoscale eddies. J. Climate, 31, 68796895, https://doi.org/10.1175/JCLI-D-17-0668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2016: Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777790, https://doi.org/10.1175/JHM-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., P. C. Meyers, and M. D. Robinson, 2016: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeor., 17, 11011117, https://doi.org/10.1175/JHM-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., W. F. Krajewski, R. R. Ferraro, and M. B. Ba, 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41, 10651080, https://doi.org/10.1175/1520-0450(2002)041<1065:EOBOSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., and R. Gairola, 2014: Validation of TRMM-3B42 precipitation product over the tropical Indian Ocean using rain gauge data from the RAMA buoy array. Theor. Appl. Climatol., 115, 451460, https://doi.org/10.1007/s00704-013-0903-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwaller, M. R., and K. R. Morris, 2011: A ground validation network for the global precipitation measurement mission. J. Atmos. Oceanic Technol., 28, 301319, https://doi.org/10.1175/2010JTECHA1403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and B. T. Johnson, 2011: Surface and atmospheric contributions to passive microwave brightness temperatures for falling snow events. J. Geophys. Res., 116, D02213, https://doi.org/10.1029/2010JD014438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., M. Kulie, L. Milani, S. J. Munchak, N. B. Wood, and V. Levizzani, 2019: Satellite estimation of falling snow: A Global Precipitation Measurement (GPM) Core Observatory perspective. J. Appl. Meteor. Climatol., 58, 14291448, https://doi.org/10.1175/JAMC-D-18-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, G. Kirchengast, D. C. Goodrich, and D. B. Wolff, 2018: Evaluation of global precipitation measurement rainfall estimates against three dense gauge networks. J. Hydrometeor., 19, 517532, https://doi.org/10.1175/JHM-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L., Y. Tian, and X. Lin, 2014: Validation of precipitation retrievals over land from satellite-based passive microwave sensors. J. Geophys. Res. Atmos., 119, 45464567, https://doi.org/10.1002/2013JD020933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: Early evaluation of Ku-and Ka-band sensitivities for the Global Precipitation Measurement (GPM) dual-frequency precipitation radar (DPR). SOLA, 11, 1417, https://doi.org/10.2151/SOLA.2015-004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varma, A. K., G. Liu, and Y.-J. Noh, 2004: Subpixel-scale variability of rainfall and its application to mitigate the beam-filling problem. J. Geophys. Res., 109, D18210, https://doi.org/10.1029/2004JD004968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Lerber, A., D. Moisseev, D. A. Marks, W. Petersen, A.-M. Harri, and V. Chandrasekar, 2018: Validation of GMI snowfall observations by using a combination of weather radar and surface measurements. J. Appl. Meteor. Climatol., 57, 797820, https://doi.org/10.1175/JAMC-D-17-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., A. Protat, S. T. Siems, H. A. Ramsay, V. Louf, M. J. Manton, and T. A. Kane, 2018: Calibrating ground-based radars against TRMM and GPM. J. Atmos. Oceanic Technol., 35, 323346, https://doi.org/10.1175/JTECH-D-17-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, https://doi.org/10.1175/2008JAMC1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and B. L. Fisher, 2009: Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteor. Climatol., 48, 10691099, https://doi.org/10.1175/2008JAMC2127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., and Y. Wang, 2019: Comparison of oceanic multisatellite precipitation data from Tropical Rainfall Measurement Mission and Global Precipitation Measurement mission datasets with rain gauge data from ocean buoys. J. Atmos. Oceanic Technol., 36, 903920, https://doi.org/10.1175/JTECH-D-18-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., F. Weng, B. Yan, N. Sun, and M. Goldberg, 2011: Special Sensor Microwave Imager (SSM/I) intersensor calibration using a simultaneous conical overpass technique. J. Appl. Meteor. Climatol., 50, 7795, https://doi.org/10.1175/2010JAMC2271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, and R. Ferraro, 2015: A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure. J. Geophys. Res. Atmos., 120, 52955315, https://doi.org/10.1002/2014JD022534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and P. Meyers, 2016: A prototype precipitation retrieval algorithm over land for ATMS. J. Hydrometeor., 17, 16011621, https://doi.org/10.1175/JHM-D-15-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., C. Peters-Lidard, J. Turk, S. Ringerud, and S. Yang, 2017a: Improving overland precipitation retrieval with brightness temperature temporal variation. J. Hydrometeor., 18, 23552383, https://doi.org/10.1175/JHM-D-17-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and S. Rudlosky, 2017b: Quantifying the snowfall detection performance of the GPM Microwave Imager channels over land. J. Hydrometeor., 18, 729751, https://doi.org/10.1175/JHM-D-16-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., C. Peters-Lidard, N.-Y. Wang, J. Turk, S. Ringerud, S. Yang, and R. Ferraro, 2018: The instantaneous retrieval of precipitation over land by temporal variation at 19 GHz. J. Geophys. Res. Atmos., 123, 92799295, https://doi.org/10.1029/2017JD027596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 55 55 16
Full Text Views 30 30 11
PDF Downloads 38 38 9

Evaluation of V05 Precipitation Estimates from GPM Constellation Radiometers Using KuPR as the Reference

View More View Less
  • 1 Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • 2 NASA Goddard Space Flight Center, Greenbelt, Maryland,
  • 3 Universities Space Research Association, Columbia, Maryland
  • 4 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • 5 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • 6 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

This study assesses the level-2 precipitation estimates from 10 radiometers relative to Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) in two parts. First, nine sensors—four imagers [Advanced Microwave Scanning Radiometer 2 (AMSR2) and three Special Sensor Microwave Imager/Sounders (SSMISs)] and five sounders [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHSs)]—are evaluated over the 65°S–65°N region. Over ocean, imagers outperform sounders, primarily due to the usage of low-frequency channels. Furthermore, AMSR2 is clearly superior to SSMISs, likely due to the finer footprint size. Over land all sensors perform similarly except the noticeably worse performance from ATMS and SSMIS-F17. Second, we include the Sondeur Atmospherique du Profil d’Humidite Intertropicale par Radiometrie (SAPHIR) into the evaluation process, contrasting it against other sensors in the SAPHIR latitudes (30°S–30°N). SAPHIR has a slightly worse detection capability than other sounders over ocean but comparable detection performance to MHSs over land. The intensity estimates from SAPHIR show a larger normalized root-mean-square-error over both land and ocean, likely because only 183.3-GHz channels are available. Currently, imagers are preferred to sounders when level-2 estimates are incorporated into level-3 products. Our results suggest a sensor-specific priority order. Over ocean, this study indicates a priority order of AMSR2, SSMISs, MHSs and ATMS, and SAPHIR. Over land, SSMIS-F17, ATMS and SAPHIR should be given a lower priority than the other sensors.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Yalei You, yyou@umd.edu

Abstract

This study assesses the level-2 precipitation estimates from 10 radiometers relative to Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) in two parts. First, nine sensors—four imagers [Advanced Microwave Scanning Radiometer 2 (AMSR2) and three Special Sensor Microwave Imager/Sounders (SSMISs)] and five sounders [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHSs)]—are evaluated over the 65°S–65°N region. Over ocean, imagers outperform sounders, primarily due to the usage of low-frequency channels. Furthermore, AMSR2 is clearly superior to SSMISs, likely due to the finer footprint size. Over land all sensors perform similarly except the noticeably worse performance from ATMS and SSMIS-F17. Second, we include the Sondeur Atmospherique du Profil d’Humidite Intertropicale par Radiometrie (SAPHIR) into the evaluation process, contrasting it against other sensors in the SAPHIR latitudes (30°S–30°N). SAPHIR has a slightly worse detection capability than other sounders over ocean but comparable detection performance to MHSs over land. The intensity estimates from SAPHIR show a larger normalized root-mean-square-error over both land and ocean, likely because only 183.3-GHz channels are available. Currently, imagers are preferred to sounders when level-2 estimates are incorporated into level-3 products. Our results suggest a sensor-specific priority order. Over ocean, this study indicates a priority order of AMSR2, SSMISs, MHSs and ATMS, and SAPHIR. Over land, SSMIS-F17, ATMS and SAPHIR should be given a lower priority than the other sensors.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Yalei You, yyou@umd.edu
Save