• Abid, M. A., F. Kucharski, M. Almazroui, and I. Kang, 2016: Interannual rainfall variability and ECMWF-Sys4-based predictability over the Arabian Peninsula winter monsoon region. Quart. J. Roy. Meteor. Soc., 142, 233242, https://doi.org/10.1002/qj.2648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alapaty, K., J. A. Herwehe, T. L. Otte, C. G. Nolte, O. R. Bullock, M. S. Mallard, J. S. Kain, and J. Dudhia, 2012: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL054031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., 2011: Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res., 99, 400414, https://doi.org/10.1016/j.atmosres.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., 2012: Dynamical downscaling of rainfall and temperature over the Arabian Peninsula using RegCM4. Climate Res., 52, 4962, https://doi.org/10.3354/cr01073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., 2016: RegCM4 in climate simulation over CORDEX-MENA/Arab domain: Selection of suitable domain, convection and land-surface schemes. Int. J. Climatol., 36, 236251, https://doi.org/10.1002/joc.4340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., M. Adnan Abid, H. Athar, M. Nazrul Islam, and M. Azhar Ehsan, 2013: Interannual variability of rainfall over the Arabian Peninsula using the IPCC AR4 global climate models. Int. J. Climatol., 33, 23282340, https://doi.org/10.1002/joc.3600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., R. Dambul, N. Islam, and P. J. Jones, 2015: Atmospheric circulation patterns in the Arab region and its relationships with Saudi Arabian surface climate: A preliminary assessment. Atmos. Res., 161–162, 3651, https://doi.org/10.1016/j.atmosres.2015.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., M. N. Islam, A. K. Al-Khalaf, and F. Saeed, 2016a: Best convective parameterization scheme within RegCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/Arab domain. Theor. Appl. Climatol., 124, 807823, https://doi.org/10.1007/s00704-015-1463-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., S. Kamil, K. Ammar, K. Keay, and A. O. Alamoudi, 2016b: Climatology of the 500-hPa Mediterranean storms associated with Saudi Arabia wet season precipitation. Climate Dyn., 47, 30293042, https://doi.org/10.1007/s00382-016-3011-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., J.-H. Jung, and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, https://doi.org/10.5194/acp-11-3731-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argüeso, D., J. M. Hidalgo-Muñoz, S. R. Gámiz-Fortis, M. J. Esteban-Parra, J. Dudhia, and Y. Castro-Diez, 2011: Evaluation of WRF parameterizations for climate studies over Southern Spain using a multistep regionalization. J. Climate, 24, 56335651, https://doi.org/10.1175/JCLI-D-11-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Athar, H., 2014: Trends in observed extreme climate indices in Saudi Arabia during 1979–2008. Int. J. Climatol., 34, 15611574, https://doi.org/10.1002/joc.3783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Attada, R., R. K. Yadav, R. K. Kunchala, H. P. Dasari, O. Knio, and I. Hoteit, 2018: Prominent mode of summer surface air temperature variability and associated circulation anomalies over the Arabian Peninsula. Atmos. Sci. Lett., 19, e860, https://doi.org/10.1002/asl.860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Attada, R., H. P. Dasari, A. Parekh, J. S. Chowdary, S. Langodan, O. Knio, and I. Hoteit, 2019a: The role of the Indian summer monsoon variability on Arabian Peninsula summer climate. Climate Dyn., 52, 33893404, https://doi.org/10.1007/s00382-018-4333-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Attada, R., H. P. Dasari, J. S. Chowdary, Y. Ramesh Kumar, O. Knio, and I. Hoteit, 2019b: Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns. Int. J. Climatol., 39, 445464, https://doi.org/10.1002/joc.5821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babu, C. A., A. A. Samah, and H. Varikoden, 2011: Rainfall climatology over Middle East Region and its variability. Int. J. Water Resour. Arid Environ., 1, 180192.

    • Search Google Scholar
    • Export Citation
  • Babu, C. A., P. R. Jayakrishnan, and H. Varikoden, 2016: Characteristics of precipitation pattern in the Arabian Peninsula and its variability associated with ENSO. Arabian J. Geosci., 9, 186, https://doi.org/10.1007/s12517-015-2265-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., B. Zaitchik, S. Paz, E. Black, J. Evans, and A. Hoell, 2016: A review of drought in the Middle East and southwest Asia. J. Climate, 29, 85478574, https://doi.org/10.1175/JCLI-D-13-00692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, L. J., and Coauthors, 2011: Initiation of convection over the Black Forest mountains during COPS IOP15a. Quart. J. Roy. Meteor. Soc., 137, 176189, https://doi.org/10.1002/qj.760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bhomia, S., P. Kumar, and C. M. Kishtawal, 2019: Evaluation of the weather research and forecasting model forecasts for Indian summer monsoon rainfall of 2014 using ground based observations. Asia-Pac. J. Atmos. Sci., 55, 617628, https://doi.org/10.1007/s13143-019-00107-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., S. K. Behera, M. Mujumdar, R. Ohba, and T. Yamagata, 2006: Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon. Wea. Rev., 134, 598617, https://doi.org/10.1175/MWR3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crétat, J., B. Pohl, Y. Richard, and P. Drobinski, 2012: Uncertainties in simulating regional climate of Southern Africa: Sensitivity to physical parameterizations using WRF. Climate Dyn., 38, 613634, https://doi.org/10.1007/s00382-011-1055-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dasari, H. P., S. Langodan, Y. Viswanadhapalli, B. R. Vadlamudi, V. P. Papadopoulos, and I. Hoteit, 2018: ENSO influence on the interannual variability of the Red Sea convergence zone and associated rainfall. Int. J. Climatol., 38, 761775, https://doi.org/10.1002/joc.5208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dasari, H. P., D. Srinivas, S. Langodan, R. Attada, R. K. Kunchala, V. Yesubabu, K. Omar, and I. Hoteit, 2019: High-resolution assessment of solar energy resources over the Arabian Peninsula. Appl. Energy, 248, 354371, https://doi.org/10.1016/j.apenergy.2019.04.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Vries, A. J., E. Tyrlis, D. Edry, S. O. Krichak, B. Steil, and J. Lelieveld, 2013: Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. J. Geophys. Res. Atmos., 118, 70877108, https://doi.org/10.1002/jgrd.50569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Vries, A. J., S. B. Feldstein, M. Riemer, E. Tyrlis, M. Sprenger, M. Baumgart, M. Fnais, and J. Lelieveld, 2016: Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Quart. J. Roy. Meteor. Soc., 142, 18621880, https://doi.org/10.1002/qj.2781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, J. P., A. González, F. J. Expósito, J. C. Pérez, J. Fernández, M. García-Díez, and D. Taima, 2015: WRF multi-physics simulation of clouds in the African region. Quart. J. Roy. Meteor. Soc., 141, 27372749, https://doi.org/10.1002/qj.2560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehsan, M. A., M. Almazroui, A. Yousef, O. B. Enda, M. K. Tippett, F. Kucharski, and A. K. Alkhalaf, 2017: Sensitivity of AGCM-simulated regional JJAS precipitation to different convective parameterization schemes. Int. J. Climatol., 37, 45944609, https://doi.org/10.1002/joc.5108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., R. B. Smith, and R. J. Oglesby, 2004: Middle East climate simulation and dominant precipitation processes. Int. J. Climatol., 24, 16711694, https://doi.org/10.1002/joc.1084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., M. Ekström, and F. Ji, 2012: Evaluating the performance of a WRF physics ensemble over South-East Australia. Climate Dyn., 39, 12411258, https://doi.org/10.1007/s00382-011-1244-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flaounas, E., V. Kotroni, K. Lagouvardos, and I. Flaounas, 2014: CycloTRACK (v1.0)—Tracking winter extratropical cyclones based on relative vorticity: Sensitivity to data filtering and other relevant parameters. Geosci. Model Dev., 7, 18411853, https://doi.org/10.5194/gmd-7-1841-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733, https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, W., C.-H. Sui, J. Fan, Z. Hu, and L. Zhong, 2016: A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations. J. Geophys. Res. Atmos., 121, 13 73513 752, https://doi.org/10.1002/2015JD024196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos., 122, 27142733, https://doi.org/10.1002/2016JD025896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 63356352, https://doi.org/10.1029/98JD02072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 21252135, https://doi.org/10.1175/MWR-D-15-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasanean, H., and M. Almazroui, 2015: Rainfall: Features and variations over Saudi Arabia, a review. Climate, 3, 578626, https://doi.org/10.3390/cli3030578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herwehe, J. A., K. Alapaty, T. L. Spero, and C. G. Nolte, 2014: Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J. Geophys. Res. Atmos., 119, 53175330, https://doi.org/10.1002/2014JD021504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2015: The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter. J. Climate, 28, 15111526, https://doi.org/10.1175/JCLI-D-14-00344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer-Verlag, 3–22.

    • Crossref
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., A. Kitoh, and P. Alpert, 2011: Climatological relationships among the moisture budget components and rainfall amounts over the Mediterranean based on a super-high-resolution climate model. J. Geophys. Res., 116, D09102, https://doi.org/10.1029/2010JD014021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kala, J., J. Andrys, T. J. Lyons, I. J. Foster, and B. J. Evans, 2015: Sensitivity of WRF to driving data and physics options on a seasonal time-scale for the southwest of Western Australia. Climate Dyn., 44, 633659, https://doi.org/10.1007/s00382-014-2160-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I. S., I. U. Rashid, F. Kucharski, M. Almouzouri, and A. A. Al-Khalaf, 2015: Multidecadal changes in the relationship between ENSO and wet-season precipitation in the Arabian Peninsula. J. Climate, 28, 47434752, https://doi.org/10.1175/JCLI-D-14-00388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. N., D. Entekhabi, and A. Molini, 2015: Hydrological extremes in hyperarid regions: A diagnostic characterization of intense precipitation over the Central Arabian Peninsula. J. Geophys. Res. Atmos., 120, 16371650, https://doi.org/10.1002/2014JD022341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. N., T. B. M. J. Ouarda, S. Sandeep, and R. S. Ajayamohan, 2016: Wintertime precipitation variability over the Arabian Peninsula and its relationship with ENSO in the CAM4 simulations. Climate Dyn., 47, 24432454, https://doi.org/10.1007/s00382-016-2973-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. N., A. Molini, T. B. M. J. Ouarda, and M. N. Rajeevan, 2017: North Atlantic controls on wintertime warm extremes and aridification trends in the Middle East. Sci. Rep., 7, 12301, https://doi.org/10.1038/s41598-017-12430-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., and M. V. Shukla, 2019: Assimilating INSAT-3D thermal infrared window imager observation with the particle filter: A case study for Vardah cyclone. J. Geophys. Res. Atmos., 124, 18971911, https://doi.org/10.1029/2018JD028827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, K. Kunkel, M. Ting, and J. X. L. Wang, 2004: Regional climate simulations of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17, 35103529, https://doi.org/10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lind, P., D. Lindstedt, E. Kjellström, and C. Jones, 2016: Spatial and temporal characteristics of summer precipitation over central Europe in a suite of high-resolution climate models. J. Climate, 29, 35013518, https://doi.org/10.1175/JCLI-D-15-0463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2007: Sensitivity of cloud-resolving simulations of warm season convection to cloud microphysics parameterizations. Mon. Wea. Rev., 135, 28542868, https://doi.org/10.1175/MWR3437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., and Coauthors, 2011: Can regional climate models represent the Indian monsoon? J. Hydrometeor., 12, 849868, https://doi.org/10.1175/2011JHM1327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Castro, D., A. Vichot-Llano, A. Bezanilla-Morlot, A. Centella-Artola, J. Campbell, F. Giorgi, and C. C. Viloria-Holguin, 2017: The performance of RegCM4 over the Central America and Caribbean regions using different cumulus parameterizations. Climate Dyn., 50, 41034126, https://doi.org/10.1007/s00382-017-3863-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015: Capabilities and limitations of convection-permitting WRF simulations of lake-effect systems over the Great Salt Lake. Wea. Forecasting, 30, 17111731, https://doi.org/10.1175/WAF-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and R. Fealy, 2013: Evaluation of the sensitivity of the Weather Research and Forecasting Model to parameterization schemes for regional climates of Europe over the period 1990–95. J. Climate, 26, 10021017, https://doi.org/10.1175/JCLI-D-11-00676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay, P., S. Taraphdar, B. N. Goswami, and K. Krishnakumar, 2010: Indian summer monsoon precipitation climatology in a high-resolution regional climate model: Impacts of convective parameterization on systematic biases. Wea. Forecasting, 25, 369387, https://doi.org/10.1175/2009WAF2222320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osman-Elasha, B., 2010: Mapping of climate change threats and human development impacts in the Arab region. Research Papers Series 03/2010, Arab Human Development Rep., 51 pp., accessed 2 March 2015, http://www.arab-hdr.org/publications/other/ahdrps/paper02-en.pdf.

  • Ouda, K. M. O., 2013: Review of Saudi Arabia municipal water tariff. World Environ., 3, 6670, https://doi.org/10.5923/j.env.20130302.05.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragab, R., and C. Prudhomme, 2000: Climate change and water resources management in the southern Mediterranean and Middle East countries. Second World Water Forum, The Hague, Netherlands, World Water Council, 42 pp.

  • Rajeevan, M., P. Rohini, K. Niranjan Kumar, J. Srinivasan, and C. K. Unnikrishnan, 2013: A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Climate Dyn., 40, 637650, https://doi.org/10.1007/s00382-012-1374-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raju, A., A. Parekh, J. S. Chowdary, and C. Gnanaseelan, 2015a: Assessment of the Indian summer monsoon in the WRF regional climate model. Climate Dyn., 44, 30773100, https://doi.org/10.1007/s00382-014-2295-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raju, A., A. Parekh, P. Kumar, and C. Gnanaseelan, 2015b: Evaluation of the impact of AIRS profiles on prediction of Indian summer monsoon using WRF variational data assimilation system. J. Geophys. Res. Atmos., 120, 81128131, https://doi.org/10.1002/2014JD023024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raju, A., A. Parekh, J. S. Chowdary, and C. Gnanaseelan, 2018: Reanalysis of the Indian summer monsoon: Four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework. Climate Dyn., 50, 29052923, https://doi.org/10.1007/s00382-017-3781-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, https://doi.org/10.1175/BAMS-84-11-1547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratna, S. B., J. V. Ratnam, S. K. Behera, C. J. deW. Rautenbach, T. Ndarana, K. Takahashi, and T. Yamagata, 2014: Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Climate Dyn., 42, 29312953, https://doi.org/10.1007/s00382-013-1918-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, R. Krishnan, T. Doi, and S. B. Ratna, 2017: Sensitivity of Indian summer monsoon simulation to physical parameterization schemes in the WRF model. Climate Res., 74, 4366, https://doi.org/10.3354/cr01484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubin, S., B. Ziv, and N. Paldor, 2007: Tropical plumes over eastern North Africa as a source of rain in the Middle East. Mon. Wea. Rev., 135, 41354148, https://doi.org/10.1175/2007MWR1919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Şahin, S., M. Türkes, S.-H. Wang, D. Hannah, and W. Eastwood, 2015: Large scale moisture flux characteristics of the Mediterranean basin and their relationships with drier and wetter climate conditions. Climate Dyn., 45, 33813401, https://doi.org/10.1007/s00382-015-2545-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandeep, S., and R. S. Ajayamohan, 2018: Modulation of winter precipitation dynamics over the Arabian Gulf by ENSO. J. Geophys. Res. Atmos., 123, 198210, https://doi.org/10.1002/2017JD027263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay-El, Y., and P. Alpert, 1991: A diagnostic study of winter diabatic heating in the Mediterranean in relation to cyclones. Quart. J. Roy. Meteor. Soc., 117, 715747, https://doi.org/10.1002/qj.49711750004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Srinivas, C. V., H. P. Dasari, D. V. B. Rao, Y. Anjaneyulu, R. Baskaran, and B. Venkatraman, 2013: Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int. J. Climatol., 33, 11951210, https://doi.org/10.1002/joc.3505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, https://doi.org/10.1126/science.1237554.

  • Sultana, R., and N. Nasrollahi, 2018: Evaluation of remote sensing precipitation estimates over Saudi Arabia. J. Arid Environ., 151, 90103, https://doi.org/10.1016/j.jaridenv.2017.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., M. Tewari, K. Ikeda, S. Tessendorf, C. Weeks, J. A. Otkin, and F. Kong, 2016: Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts. Atmos. Res., 168, 92104, https://doi.org/10.1016/j.atmosres.2015.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tubi, A., and U. Dayan, 2014: Tropical plumes over the Middle East: Climatology and synoptic conditions. Atmos. Res., 145–146, 168181, https://doi.org/10.1016/j.atmosres.2014.03.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viswanadhapalli, Y., H. P. Dasari, S. Langodan, V. S. Challa, and I. Hoteit, 2016: Climatic features of the Red Sea from a regional assimilative model. Int. J. Climatol., 37, 25632581, https://doi.org/10.1002/joc.4865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., M. Xue, and Z. Tan, 2016: Convective initiation by topographically induced convergence forcing over the Dabie Mountains on 24 June 2010. Adv. Atmos. Sci., 33, 11201136, https://doi.org/10.1007/s00376-016-6024-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. R. Leung, J. L. McGregor, D. K. Lee, W. C. Wang, Y. Ding, and F. Kimura, 2004: Regional climate modeling: Progress, challenges and prospects. J. Meteor. Soc. Japan, 82, 15991628, https://doi.org/10.2151/jmsj.82.1599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd ed. Academic Press, 627 pp.

  • Yadav, R. K., D. A. Ramu, and A. P. Dimri, 2013: On the relationship between ENSO patterns and winter precipitation over North and Central India. Global Planet. Change, 107, 5058, https://doi.org/10.1016/j.gloplacha.2013.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of the bulk properties of tropical cloud clusters from large heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., X. Z. Liang, and E. Wood, 2012: WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982–2008. Climate Dyn., 39, 20412058, https://doi.org/10.1007/s00382-011-1241-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittis, G., and P. Hadjinicolaou, 2017: The effect of radiation parameterization schemes on surface temperature in regional climate simulations over the MENA-CORDEX domain. Int. J. Climatol., 37, 38473862, https://doi.org/10.1002/joc.4959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittis, G., P. Hadjinicolaou, and J. Lelieveld, 2014: Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. Amer. J. Climate Change, 3, 490511, https://doi.org/10.4236/ajcc.2014.35042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziv, B., 2001: A subtropical rainstorm associated with a tropical plume over Africa and the Middle-East. Theor. Appl. Climatol., 69, 91102, https://doi.org/10.1007/s007040170037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., A. Dufour, S. Gulev, and G. Stenchikov, 2017: Regional hydrological cycle over the Red Sea in ERA-Interim. J. Hydrometeor., 18, 6583, https://doi.org/10.1175/JHM-D-16-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 120 120 18
Full Text Views 31 31 6
PDF Downloads 35 35 4

Evaluating Cumulus Parameterization Schemes for the Simulation of Arabian Peninsula Winter Rainfall

View More View Less
  • 1 Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • 2 Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research, Mohali, India
  • 3 Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
  • 4 National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India
  • 5 Computer, Electrical, and Mathematical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
© Get Permissions
Restricted access

Abstract

This study investigates the sensitivity of winter seasonal rainfall over the Arabian Peninsula (AP) to different convective physical parameterization schemes using a high-resolution WRF Model. Three different parameterization schemes, Kain–Fritch (KF), Betts–Miller–Janjić (BMJ), and Grell–Freitas (GF), are used in winter simulations from 2001 to 2016. Results from seasonal simulations suggest that simulated AP winter rainfall with KF is in best agreement with observed rainfall in terms of spatial distribution and intensity. Higher spatial correlation coefficients and fewer biases with observations are also obtained with KF. In addition, the regional moisture transport, cloud distribution, and cloud microphysical responses are better simulated by KF. The AP low-level circulation, characterized by the Arabian anticyclone, is well captured by KF and BMJ, but its position is displaced in GF. KF is furthermore successful at simulating the moisture distribution in the lower atmosphere and atmospheric water plumes in the middle troposphere. The higher skill of rainfall simulation with the KF (and to some extent BMJ) is attributed to a better representation of the Arabian anticyclone and subtropical westerly jet, which guides the upper tropospheric synoptic transients and moisture. In addition, the vertical profile of diabatic heating from KF is in better agreement with the observations. Discrepancies in representing the diabatic heating profile by BMJ and GF show discrepancies in instability and in turn precipitation biases. Our results indicate that the selection of subgrid convective parameterization in a high-resolution atmospheric model over the AP is an important factor for accurate regional rainfall simulations.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ibrahim Hoteit, ibrahim.hoteit@kaust.edu.sa

Abstract

This study investigates the sensitivity of winter seasonal rainfall over the Arabian Peninsula (AP) to different convective physical parameterization schemes using a high-resolution WRF Model. Three different parameterization schemes, Kain–Fritch (KF), Betts–Miller–Janjić (BMJ), and Grell–Freitas (GF), are used in winter simulations from 2001 to 2016. Results from seasonal simulations suggest that simulated AP winter rainfall with KF is in best agreement with observed rainfall in terms of spatial distribution and intensity. Higher spatial correlation coefficients and fewer biases with observations are also obtained with KF. In addition, the regional moisture transport, cloud distribution, and cloud microphysical responses are better simulated by KF. The AP low-level circulation, characterized by the Arabian anticyclone, is well captured by KF and BMJ, but its position is displaced in GF. KF is furthermore successful at simulating the moisture distribution in the lower atmosphere and atmospheric water plumes in the middle troposphere. The higher skill of rainfall simulation with the KF (and to some extent BMJ) is attributed to a better representation of the Arabian anticyclone and subtropical westerly jet, which guides the upper tropospheric synoptic transients and moisture. In addition, the vertical profile of diabatic heating from KF is in better agreement with the observations. Discrepancies in representing the diabatic heating profile by BMJ and GF show discrepancies in instability and in turn precipitation biases. Our results indicate that the selection of subgrid convective parameterization in a high-resolution atmospheric model over the AP is an important factor for accurate regional rainfall simulations.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ibrahim Hoteit, ibrahim.hoteit@kaust.edu.sa
Save