• Aryal, Y. N., G. Villarini, W. Zhang, and G. A. Vecchi, 2018: Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño–Southern Oscillation. J. Hydrol., 559, 698710, https://doi.org/10.1016/j.jhydrol.2018.02.072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, https://doi.org/10.1175/JCLI-D-13-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., K. A. Reed, C. Hannay, P. Lawrence, S. Bates, J. E. Truesdale, N. Rosenbloom, and M. Levy, 2018: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 146, 547560, https://doi.org/10.1007/s10584-016-1750-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, https://doi.org/10.1029/2010GL046258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and D. A. Zelinsky, 2018: Hurricane Harvey. National Hurricane Center Tropical Cyclone Rep. AL092017, 77 pp.

  • Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev.: Climate Change, 7, 211237, https://doi.org/10.1002/WCC.373.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., A. S. Latto, and R. Berg, 2018: Hurricane Irma. National Hurricane Center Tropical Cyclone Rep. AL112017, 111 pp.

  • Caron, L.-P., and C. G. Jones, 2012: Understanding and simulating the link between African easterly waves and Atlantic tropical cyclones using a regional climate model: The role of domain size and lateral boundary conditions. Climate Dyn., 39, 113135, https://doi.org/10.1007/s00382-011-1160-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2015: Impacts of vortex intensity and outer winds on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 141, 525537, https://doi.org/10.1002/qj.2374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811824, https://doi.org/10.1175/MWR-D-10-05062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Reed, 2019: Dynamical aquaplanet experiments with uniform thermal forcing: System dynamics and implications for tropical cyclone genesis and size. J. Atmos. Sci., 76, 22572274, https://doi.org/10.1175/JAS-D-19-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, and K. A. Emanuel, 2015: A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci., 72, 36473662, https://doi.org/10.1175/JAS-D-15-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, W. Dong, and Y. Lin, 2016: Observed tropical cyclone size revisited. J. Climate, 29, 29232939, https://doi.org/10.1175/JCLI-D-15-0731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., K. A. Reed, and J. A. Knaff, 2017: Physical understanding of the tropical cyclone wind-pressure relationship. Nat. Commun., 8, 1360, https://doi.org/10.1038/s41467-017-01546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 20 May 2019, https://cds.climate.copernicus.eu/cdsapp#!/home/.

  • Davis, C. A., 2018: Resolving tropical cyclone intensity in models. Geophys. Res. Lett., 45, 20822087, https://doi.org/10.1002/2017GL076966.

  • Dennis, J. M., and et al. , 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, https://doi.org/10.1177/1094342011428142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dullaart, J. C., S. Muis, N. Bloemendaal, and J. C. Aerts, 2020: Advancing global storm surge modelling using the new ERA5 climate reanalysis. Climate Dyn., 54, 10071021, https://doi.org/10.1007/S00382-019-05044-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA, 114, 12 68112 684, https://doi.org/10.1073/pnas.1716222114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev.,9, 19371958, https://doi.org/10.5194/GMD-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: An AMS continuing series: Global change—AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, https://doi.org/10.1175/2009MWR2976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., and et al. , 2018: Changes in hurricanes from a 13-yr convection-permitting pseudo–global warming simulation. J. Climate, 31, 36433657, https://doi.org/10.1175/JCLI-D-17-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and et al. , 2016: High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and et al. , 2018: Our changing climate. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, D. R. Reidmiller et al., Eds., Vol. II, U.S. Global Change Research Program, 72–144, https://doi.org/10.7930/NCA4.2018.CH2.

    • Crossref
    • Export Citation
  • Hodges, K., A. Cobb, and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets? J. Climate, 30, 52435264, https://doi.org/10.1175/JCLI-D-16-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, https://doi.org/10.1175/2009JCLI3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouakhi, A., G. Villarini, and G. A. Vecchi, 2017: Contribution of tropical cyclones to rainfall at the global scale. J. Climate, 30, 359372, https://doi.org/10.1175/JCLI-D-16-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., S. G. Bowen, R. Pielke Jr., and M. Bell, 2018: Continental US hurricane landfall frequency and associated damage: Observations and future risks. Bull. Amer. Meteor. Soc., 99, 13591376, https://doi.org/10.1175/BAMS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, https://doi.org/10.1175/JCLI-D-12-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. S. Pritchard, and R. C. Somerville, 2013: Robustness and sensitivities of central US summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index. Geophys. Res. Lett., 40, 32873291, https://doi.org/10.1002/grl.50597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K., D. Easterling, D. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, https://doi.org/10.1029/2010GL045164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K., D. Easterling, D. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-S., K. K. Cheung, W.-T. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 32073223, https://doi.org/10.1175/2010MWR3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendelsohn, R., K. A. Emanuel, S. Chonabayashi, and L. Bakkensen, 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209, https://doi.org/10.1038/nclimate1357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., 2014: Tropical cyclones in reanalysis data sets. Geophys. Res. Lett., 41, 21332141, https://doi.org/10.1002/2014GL059519.

  • Neale, R., and et al. , 2012: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp, www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, https://doi.org/10.1175/JCLI-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., A. B. Penny, and R. Berg, 2019: Hurricane Maria. National Hurricane Center Tropical Cyclone Rep. AL152017, 48 pp.

  • Patricola, C. M., and M. F. Wehner, 2018: Anthropogenic influences on major tropical cyclone events. Nature, 563, 339346, https://doi.org/10.1038/s41586-018-0673-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2018: The response of Atlantic tropical cyclones to suppression of African easterly waves. Geophys. Res. Lett., 45, 471479, https://doi.org/10.1002/2017GL076081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data. J. Climate, 26, 10471062, https://doi.org/10.1175/JCLI-D-11-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K., J. Bacmeister, N. Rosenbloom, M. Wehner, S. Bates, P. Lauritzen, J. Truesdale, and C. Hannay, 2015: Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys. Res. Lett., 42, 36033608, https://doi.org/10.1002/2015GL063974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011: Assessing the uncertainty in tropical cyclone simulations in NCAR’s Community Atmosphere Model. J. Adv. Model. Earth Syst., 3, M04001, https://doi.org/10.1029/2011MS000076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and D. R. Chavas, 2015: Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 7, 19381955, https://doi.org/10.1002/2015MS000519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., C. Jablonowski, and M. A. Taylor, 2012: Tropical cyclones in the spectral element configuration of the Community Atmosphere Model. Atmos. Sci. Lett., 13, 303310, https://doi.org/10.1002/asl.399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., J. T. Bacmeister, J. J. A. Huff, X. Wu, S. C. Bates, and N. A. Rosenbloom, 2019: Exploring the impact of dust on North Atlantic hurricanes in a high-resolution climate model. Geophys. Res. Lett., 46, 11051112, https://doi.org/10.1029/2018GL080642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., A. M. Stansfield, M. F. Wehner, and C. M. Zarzycki, 2020: Forecasted attribution of the human influence on Hurricane Florence. Sci. Adv., 6, eaaw9253, https://doi.org/10.1126/sciadv.aaw9253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reidmiller, D. R., C. W. Avery, D. R. Easterling, K. E. Kinkel, K. L. M. Lewis, T. K. Maycock, and B. C. Stewart, Eds., 2018: Impacts, Risks, and Adaptation in the United States. Vol. II, Fourth National Climate Assessment, U.S. Global Change Research Program, 1515 pp., https://nca2018.globalchange.gov/downloads/NCA4_2018_FullReport.pdf.

    • Crossref
    • Export Citation
  • Risser, M. D., and M. F. Wehner, 2017: Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett., 44, 12 45712 464, https://doi.org/10.1002/2017GL075888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and et al. , 2015: Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models. J. Climate, 28, 574596, https://doi.org/10.1175/JCLI-D-14-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O., A. Aiyyer, J. D. White, and W. Hannah, 2017: Revisiting the connection between African easterly waves and Atlantic tropical cyclogenesis. Geophys. Res. Lett., 44, 587595, https://doi.org/10.1002/2016GL071236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., and M. F. Wehner, 2017: Model weighting strategy. Climate Science Special Report: Fourth National Climate Assessment, D. Wuebbles et al., Eds., Vol. I, U.S. Global Change Research Program, 436–442, https://doi.org/10.7930/J06T0JS3.

    • Crossref
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., and R. E. Hart, 2012: An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533475, https://doi.org/10.1175/2011JCLI4208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., N. Lin, D. Chavas, M. Oppenheimer, and A. Brammer, 2017: Evaluating outer tropical cyclone size in reanalysis datasets using QuikSCAT data. J. Climate, 30, 87458762, https://doi.org/10.1175/JCLI-D-17-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaevitz, D. A., and et al. , 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst., 6, 11541172, https://doi.org/10.1002/2014MS000372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., A. Grundstein, and T. L. Mote, 2007: Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett., 34, L23810, https://doi.org/10.1029/2007GL031694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., and et al. , 2017: Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Wea. Climate Extremes, 18, 6574, https://doi.org/10.1016/j.wace.2017.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., 2011: Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. Numerical Techniques for Global Atmospheric Models, Springer, 357–380.

    • Crossref
    • Export Citation
  • Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92108, https://doi.org/10.1006/jcph.1996.5554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Cheng, P. Jacobs, Y. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730744, https://doi.org/10.1029/2018EF000825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., and C. M. Zarzycki, 2017: TempestExtremes: A framework for scale scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev., 10, 10691090, https://doi.org/10.5194/gmd-10-1069-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Oldenborgh, G. J., and et al. , 2017: Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/AA9EF2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., R. Goska, J. A. Smith, and G. A. Vecchi, 2014a: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, https://doi.org/10.1175/BAMS-D-13-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. A. Vecchi, T. R. Knutson, and K. A. Reed, 2014b: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, https://doi.org/10.1175/JCLI-D-13-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., M. Fiorino, C. Landsea, and K. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, https://doi.org/10.1175/JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. S., L. Zhao, J.-H. Yoon, P. Klotzbach, and R. R. Gillies, 2018: Quantitative attribution of climate effects on Hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett., 13, 054014, https://doi.org/10.1088/1748-9326/AABB85.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and et al. , 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, https://doi.org/10.1002/2013MS000276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., Prabhat, K. A. Reed, D. Stone, W. D. Collins, and J. Bacmeister, 2015: Resolution dependence of future tropical cyclone projections of CAM5.1 in the U.S. CLIVAR hurricane working group idealized configurations. J. Climate, 28, 39053925, https://doi.org/10.1175/JCLI-D-14-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., K. A. Reed, and C. M. Zarzycki, 2017: High-resolution multi-decadal simulation of tropical cyclones. Hurricanes and Climate Change, J. M. Collins, and K. Walsh, Eds., Springer, 187–211, https://doi.org/10.1007/978-3-319-47594-3_8.

    • Crossref
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805828, https://doi.org/10.1002/2014MS000352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and P. A. Ullrich, 2017: Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophys. Res. Lett., 44, 11411149, https://doi.org/10.1002/2016GL071606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014: Using variable-resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 12211239, https://doi.org/10.1175/MWR-D-13-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 27772803, https://doi.org/10.1175/JCLI-D-14-00599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 203 203 25
Full Text Views 34 34 7
PDF Downloads 36 36 7

Assessing Tropical Cyclones’ Contribution to Precipitation over the Eastern United States and Sensitivity to the Variable-Resolution Domain Extent

View More View Less
  • 1 School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York
  • | 2 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 Department of Land, Air and Water Resources, University of California, Davis, Davis, California
  • | 4 Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
© Get Permissions
Restricted access

Abstract

Tropical cyclones (TCs) can subject an area to heavy precipitation for many hours, or even days, worsening the risk of flooding, which creates dangerous conditions for residents of the U.S. East and Gulf Coasts. To study the representation of TC-related precipitation over the eastern United States in current-generation global climate models, a novel analysis methodology is developed to track TCs and extract their associated precipitation using an estimate of their dynamical outer size. This methodology is applied to three variable-resolution (VR) configurations of the Community Atmosphere Model, version 5 (CAM5), with high-resolution domains over the North Atlantic and one low-resolution conventional configuration, as well as to a combination of reanalysis and observational precipitation data. Metrics and diagnostics such as TC counts, intensities, outer storm sizes, and annual mean total and extreme precipitation are compared between the CAM5 simulations and reanalysis/observations. The high-resolution VR configurations outperform the global low-resolution configuration for all variables in the North Atlantic. Realistic TC intensities are produced by the VR configurations. The total North Atlantic TC counts are lower than observations but better than reanalysis.

Corresponding author: Alyssa M. Stansfield, alyssa.stansfield@stonybrook.edu

Abstract

Tropical cyclones (TCs) can subject an area to heavy precipitation for many hours, or even days, worsening the risk of flooding, which creates dangerous conditions for residents of the U.S. East and Gulf Coasts. To study the representation of TC-related precipitation over the eastern United States in current-generation global climate models, a novel analysis methodology is developed to track TCs and extract their associated precipitation using an estimate of their dynamical outer size. This methodology is applied to three variable-resolution (VR) configurations of the Community Atmosphere Model, version 5 (CAM5), with high-resolution domains over the North Atlantic and one low-resolution conventional configuration, as well as to a combination of reanalysis and observational precipitation data. Metrics and diagnostics such as TC counts, intensities, outer storm sizes, and annual mean total and extreme precipitation are compared between the CAM5 simulations and reanalysis/observations. The high-resolution VR configurations outperform the global low-resolution configuration for all variables in the North Atlantic. Realistic TC intensities are produced by the VR configurations. The total North Atlantic TC counts are lower than observations but better than reanalysis.

Corresponding author: Alyssa M. Stansfield, alyssa.stansfield@stonybrook.edu
Save