• Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 664 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915, https://doi.org/10.1109/36.951081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., M. A. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis. J. Hydrometeor., 12, 935954, https://doi.org/10.1175/JHM-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu, 1995: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16, 11901208, https://doi.org/10.1137/0916069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., M. B. Yeary, and G. Zhang, 2012: Efficient ways to learn weather radar polarimetry. IEEE Trans. Educ., 55, 5868, https://doi.org/10.1109/TE.2011.2118211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, and M. Xue, 2013: A variational approach for retrieving raindrop size distribution from polarimetric radar measurements in the presence of attenuation. J. Appl. Meteor. Climatol., 52, 169185, https://doi.org/10.1175/JAMC-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, https://doi.org/10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., V. Chandrasekar, and R. Bechini, 2017: An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. J. Hydrometeor., 18, 917937, https://doi.org/10.1175/JHM-D-16-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., K. Zhao, and M. Xue, 2014: Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos., 119, 12 44712 465, https://doi.org/10.1002/2014jd021965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., and Coauthors, 2019: A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part II: Performance verification and case study analysis. J. Hydrometeor., 20, 9991014, https://doi.org/10.1175/JHM-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diederich, M., A. Ryzhkov, C. Simmer, P. Zhang, and S. Trömel, 2015: Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part II: Rainfall estimates and comparison with rain gauges. J. Hydrometeor., 16, 503516, https://doi.org/10.1175/JHM-D-14-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1992: Calibration of radars using polarimetric techniques. IEEE Trans. Geosci. Remote Sens., 30, 853858, https://doi.org/10.1109/36.175319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gou, Y., H. Chen, and J. Zheng, 2019: An improved self-consistent approach to attenuation correction for C-band polarimetric radar measurements and its impact on quantitative precipitation estimation. Atmos. Res., 226, 3248, https://doi.org/10.1016/j.atmosres.2019.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J. Y., A. Ryzhkov, P. Zhang, P. Neilley, M. Knight, B. Wolf, and D. I. Lee, 2011: Polarimetric attenuation correction in heavy rain at C band. J. Appl. Meteor. Climatol., 50, 3958, https://doi.org/10.1175/2010JAMC2258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2007: A variational scheme for retrieving rainfall rate and hail reflectivity fraction from polarization radar. J. Appl. Meteor. Climatol., 46, 15441564, https://doi.org/10.1175/JAM2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2014: Fast reverse-mode automatic differentiation using expression templates in C++. ACM Trans. Math. Software, 40, 26, https://doi.org/10.1145/2560359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., and Coauthors, 2018: Quantitative precipitation estimation with operational polarimetric radar measurements in southern China: A differential phase–based variational approach. J. Atmos. Oceanic Technol., 35, 12531271, https://doi.org/10.1175/JTECH-D-17-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., K. Zhao, G. Zhang, D. Hu, and Z. Yang, 2020: Optimized raindrop size distribution retrieval and quantitative rainfall estimation from polarimetric radar. J. Hydrol., 580, 12 4248, https://doi.org/10.1016/j.jhydrol.2019.124248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., 2006: Sources of errors in rainfall measurements by polarimetric radar: Variability of drop size distributions, observational noise, and variation of relationships between R and polarimetric parameters. J. Atmos. Oceanic Technol., 23, 10051028, https://doi.org/10.1175/JTECH1899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2013: Why does radar reflectivity tend to increase downward toward the ocean surface, but decrease downward toward the land surface? J. Geophys. Res. Atmos., 118, 135148, https://doi.org/10.1029/2012JD018134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Coauthors, 2017: The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 9991013, https://doi.org/10.1175/BAMS-D-15-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maesaka, T., K. Iwanami, and M. Maki, 2012: Non-negative KDP estimation by monotone increasing ΦDP assumption below melting layer. Extended Abstracts, Seventh European Conf. on Radar in Meteorology and Hydrology, Toulouse, France, Météo-France, 26 QPE, http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/QPE_233_ext_abs.pdf.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles. Academic Press, 721 pp.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer, 497 pp.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005a: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, https://doi.org/10.1175/JAM2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005b: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, https://doi.org/10.1175/JTECH-D-13-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., P. Zhang, A. V. Ryzhkov, J. Zhang, and P.-L. Chang, 2014: Utilization of specific attenuation for tropical rainfall estimation in complex terrain. J. Hydrometeor., 15, 22502266, https://doi.org/10.1175/JHM-D-14-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., S. Cocks, L. Tang, A. Ryzhkov, P. Zhang, J. Zhang, and K. Howard, 2019: A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J. Hydrometeor., 20, 985997, https://doi.org/10.1175/JHM-D-18-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., and Coauthors, 2018: Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 21472159, https://doi.org/10.1175/MWR-D-17-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittel, W. D., R. R. Lee, L. M. Richardson, J. G. Cunningham, J. A. Schultz, R. L. Ice, and R. O. Center, 2015: Geographical and seasonal availability of light rain, dry snow and Bragg scatter to estimate WSR-88D ZDR system bias. 31st Conf. on Environmental Information Processing Technologies, Phoenix, AZ, Amer. Meteor. Soc., 11.2, https://ams.confex.com/ams/95Annual/webprogram/Paper265374.html.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 68 68 12
Full Text Views 40 40 8
PDF Downloads 45 45 5

Improved Attenuation-Based Radar Precipitation Estimation Considering the Azimuthal Variabilities of Microphysical Properties

View More View Less
  • 1 Key Laboratory for Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
  • 2 State Key Laboratory of Severe Weather, and Joint Center for Atmospheric Radar Research, China Meteorological Administration, and Nanjing University, Beijing, China
  • 3 Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado
  • 4 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • 5 Guangdong Meteorological Observatory, Guangzhou, Guangdong, China
  • 6 Guangzhou Meteorological Observatory, Guangzhou, Guangdong, China
© Get Permissions
Restricted access

Abstract

The attenuation-based rainfall estimator is less sensitive to the variability of raindrop size distributions (DSDs) than conventional radar rainfall estimators. For the attenuation-based quantitative precipitation estimation (QPE), the key is to accurately estimate the horizontal specific attenuation AH, which requires a good estimate of the ray-averaged ratio between AH and specific differential phase KDP, also known as the coefficient α. In this study, a variational approach is proposed to optimize the coefficient α for better estimates of AH and rainfall. The performance of the variational approach is illustrated using observations from an S-band operational weather radar with rigorous quality control in south China, by comparing against the α optimization approach using a slope of differential reflectivity ZDR dependence on horizontal reflectivity factor ZH. Similar to the ZDR-slope approach, the variational approach can obtain the optimized α consistent with the DSD properties of precipitation on a sweep-to-sweep basis. The attenuation-based hourly rainfall estimates using the sweep-averaged α values from these two approaches show comparable accuracy when verified against the gauge measurements. One advantage of the variational approach is its feasibility to optimize α for each radar ray, which mitigates the impact of the azimuthal DSD variabilities on rainfall estimation. It is found that, based on the optimized α for radar rays, the hourly rainfall amounts derived from the variational approach are consistent with gauge measurements, showing lower bias (1.0%), higher correlation coefficient (0.92), and lower root-mean-square error (2.35 mm) than the results based on the sweep-averaged α.

Corresponding author: Kun Zhao, zhaokun@nju.edu.cn

Abstract

The attenuation-based rainfall estimator is less sensitive to the variability of raindrop size distributions (DSDs) than conventional radar rainfall estimators. For the attenuation-based quantitative precipitation estimation (QPE), the key is to accurately estimate the horizontal specific attenuation AH, which requires a good estimate of the ray-averaged ratio between AH and specific differential phase KDP, also known as the coefficient α. In this study, a variational approach is proposed to optimize the coefficient α for better estimates of AH and rainfall. The performance of the variational approach is illustrated using observations from an S-band operational weather radar with rigorous quality control in south China, by comparing against the α optimization approach using a slope of differential reflectivity ZDR dependence on horizontal reflectivity factor ZH. Similar to the ZDR-slope approach, the variational approach can obtain the optimized α consistent with the DSD properties of precipitation on a sweep-to-sweep basis. The attenuation-based hourly rainfall estimates using the sweep-averaged α values from these two approaches show comparable accuracy when verified against the gauge measurements. One advantage of the variational approach is its feasibility to optimize α for each radar ray, which mitigates the impact of the azimuthal DSD variabilities on rainfall estimation. It is found that, based on the optimized α for radar rays, the hourly rainfall amounts derived from the variational approach are consistent with gauge measurements, showing lower bias (1.0%), higher correlation coefficient (0.92), and lower root-mean-square error (2.35 mm) than the results based on the sweep-averaged α.

Corresponding author: Kun Zhao, zhaokun@nju.edu.cn
Save