• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, G., Q. U. Zaman, G. Ali, G. Rasul, T. Mahmood, Q. Zaman, and S. B. Cheema, 2012: Validation of APHRODITE precipitation data for humid and sub humid regions of Pakistan. Pakistan J. Meteor., 9, 5769.

    • Search Google Scholar
    • Export Citation
  • Appleman, H. S., 1960: A fallacy in the use of skill scores. Bull. Amer. Meteor. Soc., 41, 6467, https://doi.org/10.1175/1520-0477-41.2.64.

  • Arulraj, M., and A. P. Barros, 2017: Shallow precipitation detection and classification using multifrequency radar observations and model simulations. J. Atmos. Oceanic Technol., 34, 19631983, https://doi.org/10.1175/JTECH-D-17-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagtasa, G., 2017: Contribution of tropical cyclones to rainfall in the Philippines. J. Climate, 30, 36213633, https://doi.org/10.1175/JCLI-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Central Intelligence Agency, 2019: East Asia/Southeast Asia: Philippines. World Factbook 2019, accessed 8 November 2019, https://www.cia.gov/library/publications/the-world-factbook/geos/rp.html.

  • Cinco, T. A., R. G. de Guzman, F. D. Hilario, and D. M. Wilson, 2014: Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951-2010. Atmos. Res., 145–146, 1226, https://doi.org/10.1016/j.atmosres.2014.03.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cinco, T. A., and et al. , 2016: Observed trends and impacts of tropical cyclones in the Philippines. Int. J. Climatol., 36, 46384650, https://doi.org/10.1002/joc.4659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronas, J., 1920: The Climate and Weather of the Philippines, 1903 – 1918. Pranava Books, 195 pp.

  • Corporal-Lodangco, I. L., and L. M. Leslie, 2017: Defining Philippine climate zones using surface and high-resolution satellite data. Procedia Comput. Sci., 114, 324332, https://doi.org/10.1016/j.procs.2017.09.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, F. T., G. T. Narisma, M. Q. Villafuerte, K. U. Cheng Chua, and L. M. Olaguera, 2013: A climatological analysis of the southwest monsoon rainfall in the Philippines. Atmos. Res., 122, 609616, https://doi.org/10.1016/j.atmosres.2012.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, J. E., J. Hartter, S. J. Ryan, and M. W. Palace, 2014: Validation of satellite rainfall products for western Uganda. J. Hydrometeor., 15, 20302038, https://doi.org/10.1175/JHM-D-13-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., F. Ruiz, S. J. Connor, and P. Ceccato, 2010: Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteor. Climatol., 49, 10041014, https://doi.org/10.1175/2009JAMC2260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., C. Funk, P. Peterson, R. Maidment, T. Tadesse, H. Gadain, and P. Ceccato, 2018: Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quart. J. Roy. Meteor. Soc., 144, 292312, https://doi.org/10.1002/qj.3244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • dos Reis, J., C. Rennó, E. Lopes, J. B. C. Dos Reis, C. D. Rennó, and E. S. S. Lopes, 2017: Validation of satellite rainfall products over a mountainous watershed in a humid subtropical climate region of Brazil. Remote Sens., 9, 1240, https://doi.org/10.3390/rs9121240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, J., and V. Balagot, 1969: Climate of the Philippines. Climates of Northern and Eastern Asia, H. Arakawa, Ed., World Survey of Climatology, Vol. 8, Elsevier, 159–213.

  • Funk, C., and et al. , 2015a: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/SDATA.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., A. Verdin, J. Michaelsen, P. Peterson, D. Pedreros, and G. Husak, 2015b: A global satellite-assisted precipitation climatology. Earth Syst. Sci. Data, 7, 275287, https://doi.org/10.5194/essd-7-275-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilario, F., R. De Guzman, D. Ortega, P. Hayman, and B. Alexander, 2009: El Niño Southern Oscillation in the Philippines: Impacts, forecasts, and risk management. Philipp. J. Dev., 36, 934.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 2019: The Transition in Multi-Satellite Products from TRMM to GPM (TMPA to IMERG). NASA GSFC, 5 pp., https://gpm.nasa.gov/sites/default/files/document_files/TMPA-to-IMERG_transition_191101.pdf.

  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jamandre, C. A., and G. T. Narisma, 2013: Spatio-temporal validation of satellite-based rainfall estimates in the Philippines. Atmos. Res., 122, 599608, https://doi.org/10.1016/j.atmosres.2012.06.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, P. Xie, R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juneng, L., and F. T. Tangang, 2010: Long-term trends of winter monsoon synoptic circulations over the maritime continent: 1962–2007. Atmos. Sci. Lett., 11, 199203, https://doi.org/10.1002/asl.272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kintanar, R., 1984: Climate of the Philippines. PAGASA Rep., 38 pp.

  • Kreft, S., D. Eckstein, L. Junghans, C. Kerestan, and U. Hagen, 2014: Global Climate Risk Index 2015: Who suffers most from extreme weather events?: Weather-related loss events in 2013 and 1994 to 2013. Germanwatch Rep., 32 pp.

  • Liu, J., Z. Duan, J. Jiang, and A. X. Zhu, 2015: Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Adv. Meteor., 2015, 151239, https://doi.org/10.1155/2015/151239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., 2016: Guidance on verification of operational seasonal climate forecasts. WMO-1220, 79 pp., https://library.wmo.int/doc_num.php?explnum_id=4886.

  • Murakami, T., and J. Matsumoto, 1994: Summer monsoon over the Asian continent and western North Pacific. J. Meteor. Soc. Japan II, 72, 719745, https://doi.org/10.2151/jmsj1965.72.5_719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasetia, R., A. R. As-syakur, and T. Osawa, 2013: Validation of TRMM precipitation radar satellite data over Indonesian region. Theor. Appl. Climatol., 112, 575587, https://doi.org/10.1007/s00704-012-0756-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pullen, J., A. L. Gordon, M. Flatau, J. D. Doyle, C. Villanoy, and O. Cabrera, 2015: Multiscale influences on extreme winter rainfall in the Philippines. J. Geophys. Res. Atmos., 120, 32923309, https://doi.org/10.1002/2014JD022645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudolf, B., 1993: Management and analysis of precipitation data on a routine basis. Proc. Int. Symp. on Precipitation and Evaporation, Bratislava, Slovakia, Slovak Hydromet Institute, 69–76.

  • Usman, M., J. E. Nichol, A. T. Ibrahim, and L. F. Buba, 2018: A spatio-temporal analysis of trends in rainfall from long term satellite rainfall products in the Sudano Sahelian zone of Nigeria. Agric. For. Meteor., 260–261, 273286, https://doi.org/10.1016/j.agrformet.2018.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villafuerte, M. Q., J. Matsumoto, I. Akasaka, H. G. Takahashi, H. Kubota, and T. A. Cinco, 2014: Long-term trends and variability of rainfall extremes in the Philippines. Atmos. Res., 137, 113, https://doi.org/10.1016/j.atmosres.2013.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodcock, F., 1976: The evaluation of yes/no forecasts for scientific and administrative purposes. Mon. Wea. Rev., 104, 12091214, https://doi.org/10.1175/1520-0493(1976)104%3C1209:TEOYFF%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2018: Guidelines on the definition and monitoring of extreme weather and climate events. WMO Tech Rep., 43 pp., https://www.wmo.int/pages/prog/wcp/ccl/documents/GUIDELINESONTHEDEFINTIONANDMONITORINGOFEXTREMEWEATHERANDCLIMATEEVENTS_09032018.pdf.

  • Xie, P., B. Rudolf, U. Schneider, and P. A. Arkin, 1996: Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J. Geophys. Res., 101, 19 02319 034, https://doi.org/10.1029/96JD01553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., T. Casey, H. Zhang, and T. Casey, 2000: Verification of categorical probability forecasts. Wea. Forecasting, 15, 8089, https://doi.org/10.1175/1520-0434(2000)015<0080:VOCPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 245 245 26
Full Text Views 31 31 9
PDF Downloads 36 36 10

Validation of High-Resolution Gridded Rainfall Datasets for Climate Applications in the Philippines

View More View Less
  • 1 Atmospheric Science Program, Department of Physics, School of Science and Engineering, Ateneo de Manila University, and Regional Climate Systems Laboratory, Manila Observatory, Quezon City, Philippines
  • | 2 Regional Climate Systems Laboratory, Manila Observatory, Quezon City, Philippines
© Get Permissions
Restricted access

Abstract

Gridded rainfall products could augment the shortage of available rainfall data in archipelagic countries like the Philippines, where weather stations are still sparsely distributed especially over its remote and less-developed islands. However, these products need to be validated first using ground measurements to determine their ability to represent properties of local rainfall. This study compares four high-resolution, gridded datasets—APHRODITEv1101, CHIRPSv2, TRMM 3B42v7, and PERSIANN-CDR—with respect to 49 synoptic weather stations over the Philippines from 1998 to 2005. The performance of these datasets was assessed in terms of bias, distribution, and different statistical error metrics and skill scores across time scales and climate types. Results show that all the datasets were able to capture the basic climatology and to varying extents, spatial patterns of Philippine rainfall. TRMM 3B42v7 has the least overall average monthly bias and most closely resembles the rainfall distribution observed at weather stations, especially dry days and torrential rain days for the whole Philippines. APHRODITEv1101 performs best in terms of error metrics and skill scores but displays consistent underestimates. CHIRPSv2, on the other hand, best captures the seasonal rainfall peaks in the different climate types in the Philippines but is prone to larger errors. Last, PERSIANN-CDR shows generally poor metrics and rainfall distributions, in comparison to the other datasets. These key findings are used to identify possible research applications in the Philippines that are best suited for each dataset.

Corresponding author: J. C. Albert C. Peralta, jc.peralta@obf.ateneo.edu

Abstract

Gridded rainfall products could augment the shortage of available rainfall data in archipelagic countries like the Philippines, where weather stations are still sparsely distributed especially over its remote and less-developed islands. However, these products need to be validated first using ground measurements to determine their ability to represent properties of local rainfall. This study compares four high-resolution, gridded datasets—APHRODITEv1101, CHIRPSv2, TRMM 3B42v7, and PERSIANN-CDR—with respect to 49 synoptic weather stations over the Philippines from 1998 to 2005. The performance of these datasets was assessed in terms of bias, distribution, and different statistical error metrics and skill scores across time scales and climate types. Results show that all the datasets were able to capture the basic climatology and to varying extents, spatial patterns of Philippine rainfall. TRMM 3B42v7 has the least overall average monthly bias and most closely resembles the rainfall distribution observed at weather stations, especially dry days and torrential rain days for the whole Philippines. APHRODITEv1101 performs best in terms of error metrics and skill scores but displays consistent underestimates. CHIRPSv2, on the other hand, best captures the seasonal rainfall peaks in the different climate types in the Philippines but is prone to larger errors. Last, PERSIANN-CDR shows generally poor metrics and rainfall distributions, in comparison to the other datasets. These key findings are used to identify possible research applications in the Philippines that are best suited for each dataset.

Corresponding author: J. C. Albert C. Peralta, jc.peralta@obf.ateneo.edu
Save