• Aryal, Y. N., G. Villarini, W. Zhang, and G. A. Vecchi, 2018: Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation. J. Hydrol., 559, 698710, https://doi.org/10.1016/j.jhydrol.2018.02.072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, https://doi.org/10.1029/2010GL046258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, N. A., G. Villarini, and K. White, 2018: Contribution of eastern North Pacific tropical cyclones and their remnants on flooding in the western United States. Int. J. Climatol., 38, 54415446, https://doi.org/10.1002/joc.5735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batalla, R. J., C. M. Gomez, and G. M. Kondolf, 2004: Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). J. Hydrol., 290, 117136, https://doi.org/10.1016/j.jhydrol.2003.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, B., M. Leonard, Y. Deng, and S. Westra, 2018: An empirical investigate-on into the effect of antecedent precipitation on flood volume. J. Hydrol., 567, 435445, https://doi.org/10.1016/j.jhydrol.2018.10.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D. A., A. P. Williams, and R. Seager, 2019: Increased fall precipitation in the southeastern United States driven by higher-intensity, frontal precipitation. Geophys. Res. Lett., 46, 83008309, https://doi.org/10.1029/2019GL083177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., M. Sivapalan, T. Wagener, A. Viglione, and H. Savenije, 2013: Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales. Cambridge University Press, 465 pp., https://doi.org/10.1017/CBO9781139235761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. H. Lei, C. H. Sui, X. H. Lin, and F. M. Ren, 2012: Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century. Geophys. Res. Lett., 39, L18702, https://doi.org/10.1029/2012GL052945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Li, and Z. Cheng, 2010: An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci., 27, 967976, https://doi.org/10.1007/s00376-010-8171-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., L. F. Huang, L. S. Tseng, J. Y. Tu, and P. H. Tan, 2009: Annual cycle of rainfall in the western North Pacific and East Asian sector. J. Climate, 22, 20732094, https://doi.org/10.1175/2008JCLI2538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dare, R. A., N. E. Davidson, and J. L. McBride, 2012: Tropical cyclone contribution to rainfall over Australia. Mon. Wea. Rev., 140, 36063619, https://doi.org/10.1175/MWR-D-11-00340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. A., I. Fung, and W. Liu, 2018: Changing character of rainfall in eastern China, 1951-2007. Proc. Natl. Acad. Sci. USA, 115, 20162021, https://doi.org/10.1073/pnas.1715386115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenicia, F., J. J. McDonnell, and H. H. G. Savenije, 2008: Learning from model improvement: On the contribution of complementary data to process understanding. Water Resour. Res., 44, W06419, https://doi.org/10.1029/2006WR005563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, S., A. Schumann, and M. Schulte, 2016: Characterization of seasonal flood types according to timescales in mixed probability distributions. J. Hydrol., 539, 3856, https://doi.org/10.1016/j.jhydrol.2016.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, https://doi.org/10.1175/2010MWR3243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, B., D. Yang, T. Zhao, and H. Yang, 2012: Changes in the eco-flow metrics of the Upper Yangtze River from 1961 to 2008. J. Hydrol., 448449, 3038, https://doi.org/10.1016/j.jhydrol.2012.03.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., E. F. Wood, T. J. Jackson, M. Drusch, and R. Bindlish, 2006: Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. J. Hydrometeor., 7, 2338, https://doi.org/10.1175/JHM473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, X., Q. Zhang, and V. P. Singh, 2017: Spatiotemporal patterns of annual and seasonal precipitation extreme distributions across China and potential impact of tropical cyclones. Int. J. Climatol., 37, 39493962, https://doi.org/10.1002/joc.4969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., G. H. Huang, and X. Wang, 2018: Future changes in precipitation extremes over China projected by a regional climate model ensemble. Atmos. Environ., 188, 142156, https://doi.org/10.1016/j.atmosenv.2018.06.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hundecha, Y., and B. Merz, 2012: Exploring the relationship between changes in climate and floods using a model-based analysis. Water Resour. Res., 48, W04512, https://doi.org/10.1029/2011WR010527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivancic, T. J., and S. B. Shaw, 2015: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133, 681693, https://doi.org/10.1007/s10584-015-1476-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, A., H. Reuter, A. Nelson, and E. Guevara, 2008: Hole-filled SRTM for the globe version 4. CGIAR-CSI SRTM 90 m Database, CGIAR-CSI, accessed 18 March 2014, https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/.

  • Kendall, M. G., 1975. Rank Correlation Methods. 4th ed. Charles Griffin, 202 pp.

  • Kim, J. H., C. H. Ho, M. H. Lee, J. H. Jeong, and D. L. Chen, 2006: Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. Geophys. Res. Lett., 33, L18706, https://doi.org/10.1029/2006GL027430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, D. B., and R. E. Davis, 2009: Contribution of tropical cyclones to extreme rainfall events in the southeastern United States. J. Geophys. Res., 114, D23102, https://doi.org/10.1029/2009JD012511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2010: Recent increases in U.S. heavy precipitation associa-ted with tropical cyclones. Geophys. Res. Lett., 37, L24706, https://doi.org/10.1029/2010GL045164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., and D. J. Abbs, 2013: Trends in Australian rainfall: Contribution of tropical cyclones and closed lows. Climate Dyn., 40, 317326, https://doi.org/10.1007/s00382-012-1566-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M. H., C. H. Ho, and J. H. Kim, 2010: Influence of tropical cyclone landfalls on spatiotemporal variations in typhoon season rainfall over South China. Adv. Atmos. Sci., 27, 443454, https://doi.org/10.1007/s00376-009-9106-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests again trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Merz, B., S. Vorogushyn, S. Uhlemann, J. Delgado, and Y. Hundecha, 2012: More efforts and scientific rigour are needed to attribute trends in flood time series. Hydrol. Earth Syst. Sci., 16, 13791387, https://doi.org/10.5194/hess-16-1379-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nogueira, R. C., and B. D. Keim, 2011: Contributions of Atlantic tropical cyclones to monthly and seasonal rainfall in the eastern United States 1960–2007. Theor. Appl. Climatol., 103, 213227, https://doi.org/10.1007/s00704-010-0292-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., and M. W. Downton, 2000: Precipitation and damaging floods: Trends in the United States, 1932–97. J. Climate, 13, 36253637, https://doi.org/10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., G. Wu, W. Dong, X. Wang, Y. Wang, W. Ai, and W. Li, 2006: Changes in tropical cyclone precipitation over China. Geophys. Res. Lett., 33, L20702, https://doi.org/10.1029/2006GL027951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., Y. M. Wang, and X. L. Wang, 2007: Estimating tropical cyclone precipitation from station observations. Adv. Atmos. Sci., 24, 700711, https://doi.org/10.1007/s00376-007-0700-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogger, M., A. Viglione, J. Derx, and G. Blöschl, 2013: Quantifying effects of catchments storage thresholds on step changes in the flood frequency curve. Water Resour. Res., 49, 69466958, https://doi.org/10.1002/wrcr.20553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, S. T., and G. Villarini, 2013: Flooding associated with predecessor rain events over the Midwest United States. Environ. Res. Lett., 8, 024007, https://doi.org/10.1088/1748-9326/8/2/024007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., C. Wasko, and D. P. Lettenmaier, 2018: If precipitation extremes are increasing, why aren’t floods? Water Resour. Res., 54, 85458551, https://doi.org/10.1029/2018WR023749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., P. Zhao, Y. Pan, and J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos., 119, 30633075, https://doi.org/10.1002/2013JD020686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, L., and G. Villarini, 2017: On the impact of gaps on trend detection in extreme streamflow time series. Int. J. Climatol., 37, 39763983, https://doi.org/10.1002/joc.4954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, L., M. B. Singer, and J. W. Kirchner, 2015: Hydrologic versus geomorphic drivers of trends in flood hazard. Geophys. Res. Lett., 42, 370376, https://doi.org/10.1002/2014GL062482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, D., S. Islam, and R. M. Vogel, 2006: Trends in precipitation and streamflow in the eastern U.S.: Paradox or perception. Geophys. Res. Lett., 33, L03403, https://doi.org/10.1029/2005GL024995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. L., 1984: Threshold methods for sample extremes. Statistical Extremes and Applications. J. T. de Oliveira, Ed., Springer, 621638.

    • Crossref
    • Export Citation
  • Su, Z., F. Ren, J. Wei, X. Lin, S. Shi, and X. Zhou, 2015: Changes in monsoon and tropical cyclone extreme precipitation in Southeast China from 1960 to 2012. Trop. Cyclone Res. Rev., 4, 1217, https://doi.org/10.6057/2015TCRR01.02.

    • Search Google Scholar
    • Export Citation
  • Suon, S., Y. Li, L. Porn, and T. Javed, 2019: Spatiotemporal analysis of soil moisture drought over China during 2008-2016. J. Water Resource Prot., 11, 700712, https://doi.org/10.4236/jwarp.2019.116041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W. G., and S. K. Carey, 2017: HydRun: A MATLAB toolbox for rainfall-runoff analysis. Hydrol. Processes, 31, 26702682, https://doi.org/10.1002/hyp.11185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarasova, L., S. Basso, M. Zink, and R. Merz, 2018: Exploring controls on rainfall-runoff events: 1. Time series- based event separation and temporal dynamics of event runoff response in Germany. Water Resour. Res., 54, 77117732, https://doi.org/10.1029/2018WR022587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Water Resources Council, 1981: Guidelines for determining flood flow frequency. Bulletin 17B, 194 pp.

  • Villarini, G., 2016: On the seasonality of flooding across the continental United States. Adv. Water Resour., 87, 8091, https://doi.org/10.1016/j.advwatres.2015.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, https://doi.org/10.1029/2009WR008395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2013: Flooding in Texas: Examination of temporal changes and impacts of tropical cyclones. J. Amer. Water Resour. Assoc., 49, 825837, https://doi.org/10.1111/jawr.12042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and R. F. Denniston, 2016: Contribution of tropical cyclones to extreme rainfall in Australia. Int. J. Climatol., 36, 10191025, https://doi.org/10.1002/joc.4393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., R. Goska, J. A. Smith, and G. A. Vecchi, 2014a: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, https://doi.org/10.1175/BAMS-D-13-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. A. Vecchi, T. R. Knutson, and K. A. Reed, 2014b: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, https://doi.org/10.1175/JCLI-D-13-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visual Numerics, 1997: IMSL Computational Technology Toolkit. Vol. II, Visual Numerics, 823 pp.

  • Vormoor, K., D. Lawrence, L. Schlichting, D. Wilson, and W. K. Wong, 2016: Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J. Hydrol., 538, 3348, https://doi.org/10.1016/j.jhydrol.2016.03.066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., L. Wu, F. Ren, Y. Wang, and W. Li, 2008: Influences of tropical cyclones on China during 1965-2004. Adv. Atmos. Sci., 25, 417426, https://doi.org/10.1007/s00376-008-0417-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., S. C. Liu, R. Liu, C.-J. Shiu, C. He, and X. Zhong, 2019: Observed changes in precipitation extremes and effects of tropical cyclones in South China during 1955-2013. Int. J. Climatol., 39, 26772684, https://doi.org/10.1002/joc.5980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waylen, P. R., 1991: Modeling the effects of tropical cyclones on flooding in the Santa Fe river basin, Florida. GeoJournal, 23, 361373, https://doi.org/10.1007/BF00193609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y. J., S. G. Wu, and P. M. Zhai, 2007: The impact of tropical cyclones on Hainan Island’s extreme and total precipitation. Int. J. Climatol., 27, 10591064, https://doi.org/10.1002/joc.1464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, R., Z. Ding, S. You, and H. Xu, 2016: Relationship of tropical-cyclone-induced remote precipitation with tropical cyclones and the subtropical high. Front Earth Sci., 10, 595606, https://doi.org/10.1007/s11707-015-0530-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, L., L. Xiong, G. Ruan, C. Xu, P. Yan, and P. Liu, 2019: Reducing uncertainty of design floods of two-component mixture distributions by utilizing flood timescale to classify flood types in seasonally snow covered region. J. Hydrol., 574, 588608, https://doi.org/10.1016/j.jhydrol.2019.04.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and X. Lu, 2014: Drastic change in China’s lakes and reservoirs over the past decades. Sci. Rep., 4, 6041, https://doi.org/10.1038/srep06041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., L. J. Zhou, C. F. Zhao, and J. Yang, 2018: Impact of aerosols on tropical cyclone-induced precipitation over the mainland of China. Climatic Change, 148, 173185, https://doi.org/10.1007/s10584-018-2175-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, M., B. D. Chen, and G. X. Wu, 2011: Climate trends in tropical cyclone-induced wind and precipitation over mainland China. Geophys. Res. Lett., 38, L01702, https://doi.org/10.1029/2010GL045729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Y. Lai, X. Gu, P. Shi, and V. P. Singh, 2018: Tropical cyclonic rainfall in China: Changing properties, seasonality, and causes. J. Geophys. Res. Atmos., 123, 44764489, https://doi.org/10.1029/2017JD028119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L. Y., S. M. Quiring, I. Guneralp, and W. G. Peacock, 2015: Variations in tropical cyclone-related discharge in four watersheds near Houston, Texas. Climate Risk Manage., 7, 110, https://doi.org/10.1016/j.crm.2015.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 184 184 7
Full Text Views 46 46 12
PDF Downloads 58 58 15

Comparison of Floods Driven by Tropical Cyclones and Monsoons in the Southeastern Coastal Region of China

View More View Less
  • 1 State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
© Get Permissions
Restricted access

Abstract

Increasing evidence indicates that changes have occurred in heavy precipitation associated with tropical cyclone (TC) and local monsoon (non-TC) systems in the southeastern coastal region of China over recent decades. This leads to the following questions: what are the differences between TC and non-TC flooding, and how do TC and non-TC flooding events change over time? We applied an identification procedure for TC and non-TC floods by linking flooding to rainfall. This method identified TC and non-TC rainfall–flood events by the TC rainfall ratio (percentage of TC rainfall to total rainfall for rainfall–flood events). Our results indicated that 1) the TC rainfall–flood events presented a faster runoff generation process associated with larger flood peaks and rainfall intensities but smaller rainfall volumes, compared to that of non-TC rainfall–flood events, and 2) the magnitude of TC floods exhibited a decreasing trend, similar to the trend in the amount and frequency of TC extreme precipitation. However, the frequency of TC floods did not present obvious changes. In addition, non-TC floods decreased in magnitude and frequency while non-TC extreme precipitation showed an increase. Our results identified significantly different characteristics between TC and non-TC flood events, thus emphasizing the importance of considering different mechanisms of floods to explore the physical drivers of runoff response. Also, our results indicated that significant decreases occurred in the magnitude, but not the frequency, of floods induced by TC from the western North Pacific, which is the most active ocean basin for TC activity, and thus can provide useful information for future studies on the global pattern of TC-induced flooding.

Corresponding author: Dawen Yang, yangdw@tsinghua.edu.cn

Abstract

Increasing evidence indicates that changes have occurred in heavy precipitation associated with tropical cyclone (TC) and local monsoon (non-TC) systems in the southeastern coastal region of China over recent decades. This leads to the following questions: what are the differences between TC and non-TC flooding, and how do TC and non-TC flooding events change over time? We applied an identification procedure for TC and non-TC floods by linking flooding to rainfall. This method identified TC and non-TC rainfall–flood events by the TC rainfall ratio (percentage of TC rainfall to total rainfall for rainfall–flood events). Our results indicated that 1) the TC rainfall–flood events presented a faster runoff generation process associated with larger flood peaks and rainfall intensities but smaller rainfall volumes, compared to that of non-TC rainfall–flood events, and 2) the magnitude of TC floods exhibited a decreasing trend, similar to the trend in the amount and frequency of TC extreme precipitation. However, the frequency of TC floods did not present obvious changes. In addition, non-TC floods decreased in magnitude and frequency while non-TC extreme precipitation showed an increase. Our results identified significantly different characteristics between TC and non-TC flood events, thus emphasizing the importance of considering different mechanisms of floods to explore the physical drivers of runoff response. Also, our results indicated that significant decreases occurred in the magnitude, but not the frequency, of floods induced by TC from the western North Pacific, which is the most active ocean basin for TC activity, and thus can provide useful information for future studies on the global pattern of TC-induced flooding.

Corresponding author: Dawen Yang, yangdw@tsinghua.edu.cn
Save